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I. INTRODUCTION

Malaria, a blood-borne disease transmitted by mosquitoes,
involves the infection of red blood cells in humans and other
organisms by protists of the genus Plasmodium. Current
state of the art for medical diagnosis and research purposes
involves drawing a blood sample from a patient or research
subject. This blood sample is smeared onto a slide and stained
in order to color cell nuclei. Because mature red blood cells
do not possess nuclei, the stain only strongly marks malarial
parasites. The slide can then be examined under a microscope
in order to count the number of infected red blood cells.
Figure 1 presents an example micrograph.

Fig. 1. Example image

A red blood cell is considered infected if at least one
parasite can be detected within its interior. White blood
cells and free-floating parasites are not considered. The
current state of the art involves manual counting by a
laboratory technician or other individual, who can distinguish
staining artifacts from actual nuclei, white blood cells, and
(depending on specific requirements) life cycle and species of
malarial parasites [1]. Although manual counting is relatively
inexpensive to implement, adequate sensitivity requires proper
training and supervision of technicians. This poses problems
for both medical care providers in impoverished regions of
the world as well as laboratory settings which may benefit
from automation of a tedious and time-consuming task [2].
Conceivably, automation of this task could both facilitate
laboratory efficiency as well as provide an alternative
diagnostic tool in conjunction with mobile phone based
microscopy in developing countries [3].

This paper describes a basic image processing pipeline

implemented in MATLAB which detects Plasmodium
falciparum parasites within a micrograph of a blood smear
slide and attempts to determine which red blood cells in an
image are infected. Efficacy of this pipeline is demonstrated,
and a number of potential improvements and directions for
further development are discussed.

II. PREPROCESSING

Blood smear micrographs (see Figure 1) are first
transformed into the hue-saturation-value (HSV) color
space using the rgb2hsv function. This transforms a
standard red-green-blue image (such as those obtained from
digital cameras) into a three-dimensional vector whose
dimensions correspond to the hue (H), saturation (S), and
value (V) of each pixel in the image (Figure 2).

Fig. 2. HSV color space image

Two masks are created from the V component of the
image, which is relatively insensitive to the presence or
absence of purple stain areas. The V component is subjected
to histogram equalization (histeq). Histogram equalization
tends to ‘spread out’ the range of grayscale values comprising
an image and provides a form of normalization that allows
both edges and nuclei to be more easily thresholded across
differently lit images. Because the interiors of red blood cells
are significantly darker than the surrounding background Otsu
thresholding is carried out in order to create an area mask
which determines whether or not a particular region of the
image lies within a red blood cell (Figure 3).

It is possible to exploit optical artifacts in the V component
by conducting thresholding on a band of values (for
histogram-equalized images, between around 0.6 and 0.7)



Fig. 3. RBC area mask

to produce a reasonable approximation of the edges of the
cells (Figure 4). This outline mask is then subjected to
Canny edge detection [4] to create an edge map comprised of
single-pixel edges (Figure 5). It is also possible, depending
on the characteristics of the map, to perform morphological
dilation and erosion on the area mask to create this outline. A
particularly complex example is provided in Figures 6 and 7.
In this example it is conceivable that morphological erosion
could be carried out on the area mask and then applied
to the edge mask in order to create a significantly cleaner
edge mask devoid of the ‘noise’ beyond the edges of the cells.

Fig. 4. RBC outline mask

Fig. 5. Edge detection (portion)

III. PARASITE CANDIDATE DETECTION

The H and S components are used to detect and differentiate
regions which have been stained (including candidate parasite

Fig. 6. Poor-quality area mask

Fig. 7. Edge mask

nuclei). The H and S components are subjected to histogram
equalization and then thresholded to produce a mask
consisting of all purple regions in the input image, each of
which is believed to correspond to either a parasite or part
of a parasite (Figure 8). Small region removal is carried out
in order to suppress extremely small signals caused by poor
image quality or noise from imprecise threshold choice. Once
this is complete the remaining regions in the image can be
identified and labeled using bwlabel.

Fig. 8. Candidate region mask (portion)

IV. CELL SEGMENTATION

Once parasite nuclei candidates have been isolated and
identified, it is necessary to examine each one in order to
determine whether or not it lies within the confines of a red
blood cell, and if so estimate the center and approximate
extent of the red blood cell. This task is complicated by
certain common image properties – overlapping and deformed



blood cells, low contrast, and blur from poor focusing.

Cell segmentation is accomplished by examining a
‘window’ surrounding each parasite nuclei candidate. This
window comprises a 500 pixel by 500 pixel area surrounding
the centroid of the nuclei region on the candidate mask. Cell
outline and cell area masks corresponding to this window
are obtained and used to determine whether blood cells exist
within the window region and whether or not the parasite
candidate in question lies within a red blood cell.

Six ring-shaped masks of progressively larger radius are
‘slid’ across the outline mask in order to detect circular
regions, including incomplete regions corresponding to cells
which are overlapping, partially outside the window region, or
misshapen. This results in a number of line segments which
are then labeled and categorized using regionprops. Line
segments whose length is computed to be greater than 20%
of the average circumference of the mask are considered
potential candidates for the edge of a red blood cell; line
segments are weighed according to the proportion of their
length to the average circumference in order to place greater
emphasis on longer, continuous line segments. The weighed
sum of all candidate line segment lengths is then calculated;
if this value exceeds a threshold based on the circumference
of the mask a circle (and by extension, a red blood cell) is
considered to have been detected and the current coordinates
are stored. The RBC area mask for the window is also
checked; proposed circles which do not lie within a dark
green region are considered spurious and rejected. Figure 9
demonstrates an appplication of this algorithm to a portion of
the edge map shown in Figure 5.

Fig. 9. Sample window region, with estimated cell locations and radii

A number of parameters affect the effectiveness of the
circle detection algorithm. An increased difference between
the inner and outer radii of the mask allows for improved
detection of ovoid and deformed cells, but also results in
increased sensitivity to spurious line segments and ‘premature
detection’ (fitting a smaller circle to an outline where a

larger circle might have more accurately reflected the size of
the red blood cell). The line segment length sum threshold
also reflects a trade-off between detecting circles with
poorly-defined edges (for instance, circles which overlap) and
spurious fitting. Finally, weighting of candidate line segments
reflects a balance between ‘rewarding’ longer line segments
as being more likely to signify an actual cell edge while still
being capable of detecting cells whose edges are comprised
of several shorter line segments.

Once cell segmentation has been carried out for all nuclei
candidate regions the cell radius and center coordinate
information can be used to both count the number of infected
red blood cells and plot candidate cell locations onto the
original image for further examination. A post-processing
step not currently implemented calculates the distance of
candidate locations and attempts to consolidate close-by cell
candidates into clusters; each cluster is then ‘consolidated’
into a single cell for counting and analysis purposes.

V. RESULTS

The image processing pipeline was applied to five test
images. Candidate nuclei within 250 pixels of the edge of
the image were intentionally ignored due to time constraints
and limitations with the test harness. These images were
chosen due to their lack of visual noise (red blood cells are
evenly colored, no background artifacts) in order to carry out
a baseline performance evaluation and identify strengths and
weaknesses in the pipeline.

Test images 2 and 3 exhibit the highest performance. Test
image 2 (Figure 11) demonstrates the identification of four
red blood cells containing parasites and estimates a boundary
for each of the cells. These boundaries fall into four distinct
clusters, which could be correlated through further analysis
(consolidating cells with very close centers together). In test
image 3 (Figure 12), seven cells containing parasite nuclei
are identified, and the borders of the predicted red blood cells
are clearly delineated.

Test images 1 (Figure 10) and 4 (Figure 13) demonstrates
several limitations of the system as it currently exists. Test
image 1 is dominated by parasites in the schizont stage,
which appear as round purple clusters containing many
dark purple spots. Each of the spots within the schizont is
currently detected as a separate candidate and analyzed as
such. The three schizonts in the middle of the image are
clearly detected, but a large number of spurious detections
characterize both these three schizonts and the fourth one to
the upper right. These spurious detections are caused when
cell segmentation is carried out on some of the schizont spots
near the edge of the cluster. Test image 4 exhibits similar
issues with schizont detection, exhibiting two high accuracy
detections of schizonts and a large number of close-by



spurious signals.

Test image 5 (Figure 14) poses significant complications
for detection, as a large number of red blood cells are
clumped together and edges between adjacent cells are
indistinct to nonexistent. There are three strong infected cell
correlations, one strong correlation with a spurious stain (due
to insufficient candidate processing), and a number of highly
imprecise detections which could not properly characterize
the cell within which a parasite resided. Finally, of particular
note are the two candidates near the lower right section
of the image. Both these candidates lie within a group of
cells which touch in multiple places and have no visible
internal edges to aid with cell segmentation. These candidates
demonstrate the weakness of an approach (such as this one)
which exclusively tries to fit parasite candidates into blood
cells without additional heuristics.

Fig. 10. Image 1, categorized

Fig. 11. Image 2, categorized

VI. FURTHER WORK

A. Automatic selection of parameters

The image processing pipeline currently depends on a
number of hand-selected parameters, most of which are used
for thresholding HSV images or the circle detection algorithm.
These values were chosen based on empirical performance
in order to produce acceptable results with the set of test
images, and may or may not be valid for a different batch of

Fig. 12. Image 3, categorized

Fig. 13. Image 4, categorized

blood smear slides taken under differing lighting conditions.
Further work should be conducted into determining algorithms
to adaptively adjust these values with minimal user input.

B. Parasite candidate mask processing

Currently no processing is carried out on the parasite
candidate mask except for small region removal in order to
suppress image noise. A significant opportunity exists to carry
out analysis on the parasite regions and perform consolidation
in order to increase accuracy and reduce noise. In particular,
parasites in the schizont life stage exhibit a large number of
dark round stains clustered into a roughly circular or ellipsoid
area colored a lighter purple, while ring stage parasites are
characterized by the presence of a faint purple ring surround-
ing the nucleus. It should be feasible to use two different
candidate masks, one more selective than the other, in order
to combine related candidate regions into single candidates.
This would significantly reduce redundant work (in particular,
circle detection on candidate regions which are part of the
same malaria parasite) and allow for different cell detection
strategies to be applied based on the type of the parasite.

C. Circle detection and heuristics

The circle detection algorithm currently uses only a very
rudimentary set of heuristics in order to determine whether
the line segments contained within the ring-shaped mask
comprise the outline of a cell. There is significant opportunity
for improving the methods used to discern valid and invalid
line segments. An example may be estimating the curvature



Fig. 14. Image 5, categorized

of a particular line segment by calculating the distance of
various points along its length from the mask center, or
attempting to detect the sharp ‘points’ in an outline formed
when two circles overlap.

Furthermore, in some cases it may be impractical or impos-
sible to extract an outline for a particular group of adjacent
cells due to poor edge differentiation. In this case alternative
heuristics may be necessary in order to identify or count
infected red blood cells in the ‘blob’. At the very least, the
pipeline should be able to identify such trouble spots and flag
them for human examination.

D. Preprocessing

The images used for testing the processing pipeline were
chosen due to low levels of visual noise. Visual noise includes
faint ‘background’ red blood cells which cannot easily be
distinguished from the background through Otsu thresholding
alone, as well as dark regions within red blood cells caused by
their characteristic shape. Visual noise results in large portions
of the area and outline masks which degrades performance.
It may be necessary to further characterize and mitigate this
noise in order to ensure robust performance.

E. Performance

At the present time processing a single blood smear image
requires anywhere from thirty seconds to multiple minutes
until completion. This is due mostly to the sliding mask
circle detection algorithm used to attempt to fit circles to the
outline mask. Improvements in parasite mask processing and
circle detection, described above, as well as refactoring of
existing MATLAB code should greatly decrease the amount
of time required to process a single image.

VII. CONCLUSION

A preliminary image processing pipeline for detecting
malarial parasites within red blood cells was developed, and
its capabilities and limitations were characterized. Although
the pipeline exhibits basic functionality, further work is
necessary in order to improve robustness to the point where
it can be usefully applied to a wide variety of images. A

number of areas of potential improvement were identified,
and will provide guidance as development continues. The
current pipeline provides a useful framework which can be
refined and extended in order to improve accuracy, tolerance
of image noise, and further capabilities.
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