
Most Useful ML Algorithms
With Hands-On Code and Real Applications

Mostapha Kalami Heris
linkedin.com/in/smkalami

https://www.linkedin.com/in/smkalami

What You Will Learn

A Practical Tour of Machine Learning Essentials

This document is designed for beginners and intermediate learners who

want to understand and apply the most important machine learning (ML)

algorithms.

You will explore:

Key ML algorithms used in real-world projects

Simple explanations of how they work

Python code snippets using scikit-learn

Use cases in fields like health, marketing, and finance

By the end, you will:

Know when and why to use each algorithm

Understand the intuition behind their logic

Be able to test them with real datasets

Learn by reading, coding, and applying.

Mostapha Kalami Heris | linkedin.com/in/smkalami 2

https://linkedin.com/in/smkalami

What Is a Machine Learning Algorithm?

From Data to Decisions

A machine learning algorithm is a method that allows computers to learn

patterns from data and make predictions or decisions without being explicitly

programmed.

Three Main Types of ML Algorithms:

Supervised Learning

Learns from labeled data (e.g., predicting house prices).

Unsupervised Learning

Finds patterns in unlabeled data (e.g., grouping customers).

Reinforcement Learning

Learns by trial and error through rewards and penalties. It is a powerful

technique where agents learn to make decisions by interacting with an

environment, like how a robot learns to walk or an AI masters chess.

While not covered in this guide, RL is at the frontier of applied AI in

robotics, games, and operations research.

Think of ML algorithms as recipes that turn raw data into useful insights.

Mostapha Kalami Heris | linkedin.com/in/smkalami 3

https://linkedin.com/in/smkalami

Choosing the Right Algorithm

It Depends on Your Problem and Your Data

ML algorithms vary in purpose and suitability. The right choice depends on:

 Problem Type

Regression → Predict numbers (e.g., prices, temperatures)

Classification → Predict categories (e.g., spam or not)

Clustering → Discover groups (e.g., customer segments)

 Data Characteristics

Size and dimensionality

Cleanliness and noise

Linearity or complexity

 Interpretability vs Accuracy

Some models (e.g., linear regression) are easy to explain

Others (e.g., random forests) offer more power but are harder to interpret

Choose based on your goals, your data, and your constraints.

Mostapha Kalami Heris | linkedin.com/in/smkalami 4

https://linkedin.com/in/smkalami

1. Linear Regression

Predicting Continuous Values

Linear Regression models the relationship between input features and a

numeric target by fitting a straight line.

It assumes a linear equation:

y = w ​ +0 w ​x ​ +1 1 w ​x ​ +2 2 ⋯ + w ​x ​ +n n ε

 Python Example (Scikit-Learn)

 Real-World Use Cases

Predicting house prices

Forecasting sales or energy demand

Estimating medical costs

Simple, interpretable, and a great starting point for regression tasks.

from sklearn.linear_model import LinearRegression

model = LinearRegression()

model.fit(X_train, y_train)

predictions = model.predict(X_test)

Python

Mostapha Kalami Heris | linkedin.com/in/smkalami 5

https://linkedin.com/in/smkalami

2. Logistic Regression

Predicting Binary or Categorical Outcomes

Logistic Regression is used for classification tasks. It models the probability

that an instance belongs to a certain class.

The output is passed through a sigmoid function to constrain values between

0 and 1:

P (y = 1∣x) = ​

1 + e−(w ​+w ​x ​+⋯+w ​x ​)0 1 1 n n

1

 Python Example (Scikit-Learn)

 Real-World Use Cases

Spam detection

Disease diagnosis (e.g., diabetes prediction)

Customer churn classification

A powerful and fast baseline for many classification problems.

from sklearn.linear_model import LogisticRegression

model = LogisticRegression()

model.fit(X_train, y_train)

predictions = model.predict(X_test)

Python

Mostapha Kalami Heris | linkedin.com/in/smkalami 6

https://linkedin.com/in/smkalami

3. Decision Trees

Learning Through Questions

A Decision Tree splits the data by asking a series of questions, creating a

flowchart-like structure. It makes decisions by recursively dividing data into

smaller subsets.

The goal is to maximize information gain at each split.

 Python Example (Scikit-Learn)

 Real-World Use Cases

Loan approval systems

Medical decision support

Customer segmentation

Easy to interpret, but can overfit without constraints (e.g., max depth).

from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()

model.fit(X_train, y_train)

predictions = model.predict(X_test)

Python

Mostapha Kalami Heris | linkedin.com/in/smkalami 7

https://linkedin.com/in/smkalami

4. Random Forests

Power Through Multiple Trees

A Random Forest is an ensemble of decision trees. It builds multiple trees

using random subsets of data and features, then combines their predictions.

This reduces overfitting and improves generalization.

 Python Example (Scikit-Learn)

 Real-World Use Cases

Fraud detection

Credit risk analysis

Product recommendation systems

More robust than a single decision tree, and often a top performer in

practice.

from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100)

model.fit(X_train, y_train)

predictions = model.predict(X_test)

Python

Mostapha Kalami Heris | linkedin.com/in/smkalami 8

https://linkedin.com/in/smkalami

5. K-Nearest Neighbors (KNN)

Learning by Example

KNN is a simple, instance-based algorithm that makes predictions based on

the majority class (or average value) among the k closest points in the

training data.

No training phase — all computation happens at prediction time.

 Python Example (Scikit-Learn)

 Real-World Use Cases

Recommender systems

Image classification

Anomaly detection

Intuitive and easy to implement — but can be slow with large datasets.

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=5)

model.fit(X_train, y_train)

predictions = model.predict(X_test)

Python

Mostapha Kalami Heris | linkedin.com/in/smkalami 9

https://linkedin.com/in/smkalami

6. Support Vector Machines (SVM)

Finding the Optimal Boundary

SVM finds the best hyperplane that separates data into classes with the

maximum margin. It can handle linear and non-linear data using kernel

functions. It focuses on support vectors, the critical data points near the

boundary.

Given data points, SVM solves the following optimization problem:

max margin subject to correct classification

 Python Example (Scikit-Learn)

 Real-World Use Cases

Text classification (e.g., sentiment analysis)

Bioinformatics (e.g., gene classification)

High performance on complex data, but can be sensitive to parameter

tuning.

from sklearn.svm import SVC

model = SVC(kernel="linear") # or "rbf", "poly"

model.fit(X_train, y_train)

predictions = model.predict(X_test)

Python

Mostapha Kalami Heris | linkedin.com/in/smkalami 10

https://linkedin.com/in/smkalami

7. K-Means Clustering

Finding Natural Groupings in Data

K-Means is an unsupervised algorithm that groups data into k clusters by

minimizing the distance between points and their cluster centroids.

It works by:

1. Initializing k centroids randomly

2. Assigning each point to the nearest centroid

3. Recomputing centroids and repeating

 Python Example (Scikit-Learn)

 Real-World Use Cases

Customer segmentation

Image compression

Market basket analysis

Simple yet powerful for discovering patterns in unlabeled data.

from sklearn.cluster import KMeans

model = KMeans(n_clusters=3)

model.fit(X)

labels = model.predict(X)

Python

Mostapha Kalami Heris | linkedin.com/in/smkalami 11

https://linkedin.com/in/smkalami

Summary of Algorithms

A Quick Comparison

Algorithm Type
Common Use

Case
Strengths Limitations

Linear

Regression
Supervised (Regression)

Predicting

prices or trends

Fast, simple,

interpretable

Assumes linear

relationships

Logistic

Regression
Supervised (Classification)

Binary

classification

Probabilistic

output, efficient

Limited to linear

boundaries

Decision

Tree

Supervised

(Classification/Regression)

Decision

support

Easy to explain

and visualize

Can overfit

without pruning

Random

Forest

Supervised

(Classification/Regression)
Fraud detection

High accuracy,

reduces

overfitting

Harder to

interpret

KNN
Supervised

(Classification/Regression)

Pattern

recognition

No training

phase, intuitive

Slow with large

datasets

SVM Supervised (Classification)
Text or image

classification

Works well with

complex data

Needs careful

tuning

K-Means Unsupervised (Clustering)
Customer

segmentation

Simple and

scalable

Requires pre-

set number of

clusters

No single algorithm is best for all tasks — choose based on your data

and goals.

Mostapha Kalami Heris | linkedin.com/in/smkalami 12

https://linkedin.com/in/smkalami

Key Takeaways

What You Should Now Understand

 Machine learning algorithms help find patterns and make predictions

from data.

 There are different types: supervised (regression/classification) and

unsupervised (clustering).

 Each algorithm has strengths and trade-offs — choose based on your

data and problem type.

 You saw how to use each one with Scikit-Learn in just a few lines of

Python.

 Real-world applications range from healthcare to finance, marketing, and

beyond.

The best way to learn is to try them out — experiment with datasets and

tweak parameters.

Let theory guide you, but let practice teach you.

Mostapha Kalami Heris | linkedin.com/in/smkalami 13

https://linkedin.com/in/smkalami

Enjoyed this guide?

Let’s keep the conversation going!

 Like if you found it helpful

 Comment with your thoughts or questions

 Repost to share with your network

 Save for future reference

 Follow for more practical content like this

Glad we could explore this together. Let’s keep going.

Mostapha Kalami Heris, PhD

Applied AI and Machine Learning Scientist

linkedin.com/in/smkalami

https://www.linkedin.com/in/smkalami

