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a b s t r a c t 

In recent years, the emerging paradigm of software-defined networking has become a hot and thriving 

topic in both the industrial and academic sectors. Software-defined networking offers numerous benefits 

against legacy networking systems by simplifying the process of network management through reducing 

the cost of network configurations. Currently, data plane fault management is limited to two mecha- 

nisms: proactive and reactive . These fault management and recovery techniques are activated only after a 

failure occurrence and hence packet loss is highly likely to occur. This is due to convergence time where 

new network paths will need to be allocated in order to forward the affected traffic rather than drop it. 

Such convergence leads to temporary service disruption and unavailability. Practically, not only the speed 

of recovery mechanisms affects the convergence, but also the delay caused by the process of failure de- 

tection. In this paper, we define a new approach for data plane fault management in software-defined 

networks where the goal is to eliminate the convergence process altogether rather than accelerate the 

failure detection and recovery. We propose a new framework, called Smart Routing , which allows the net- 

work controller to receive forewarning signs on failures and hence avoid risky paths before the failure 

incidents occur. The proposed approach aims to decrease service disruption, which in turn increases net- 

work service availability. We validate our framework through a set of experiments that demonstrate how 

the underlying model runs and its impact on improving service availability. We take as example of the 

applicability of the new framework three types of topologies covering real and simulated networks. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The concern about the Internet ossification, which is a conse-

uence of the growing number of variety networks (e.g. IoT, WSN,

loud, etc.) that serve up to 9 billion users around the globe, has

ed to investigate for replacing the existing rigid network infras-

ructure with programmable one [1] . In this context, Software-

efined Networking (SDN) has been emerged as a promising solu-

ion for tackling the inflexibility of the legacy networking systems.

n fact, SDN is part of a long history of attempts that aim to lower

he barrier of deploying new innovations and make the network

ore programmable. For more on the history of programmable

etworks, we refer the interested readers to [2] . Unlike traditional

P networks, SDN architectures consist of three planes: control, data
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nd application . The control plane , or sometimes called the con-

roller , represents the network brain, which provides the essential

unctions and exerts a granular control by relying on the global

iew over the network topology, which is a crucial feature that

as been missed in the past. The data plane comprises network

orwarding elements that constitute the network topology. These

orwarding elements are dictated by the network controller and

herefore the entire nodes need to disclose their status periodically

o the controller, hence the global view comes. In general, many

tudies have classified the SDN into two layers by considering the

pplication plane as a complementary part to the control layer to

olve various kinds of network issues such as firewall and load bal-

nce. So far, OpenFlow [3] is the most widely used protocol that

nables the controller to govern the SDN data plane through car-

ying the forwarding rules as well as to capacitate the exchanging

f signals between the two planes. Recently, SDN was not solely

onfined to the academic field but also gained the attraction of in-

ustry such as Google and Microsoft [4] . 
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Fig. 1. The compartmentalisation of dependability concept, Laprie [5] . 
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Nowadays, communication networks play a vital role in human

being’s life activities as it represents the backbone for the modern

technologies. Networking equipment are failure prone and there-

fore, some aspects like availability, reliability and fault manage-

ment are necessary. The term dependability is the umbrella that en-

compasses the aforementioned aspects and Fig. 1 gives an overall

picture on the dependability taxonomy according to [5] . However,

this paper focuses on the availability attribute by means of fault

tolerance and forecasting of SDN link failures. 

Although SDNs have brought a bunch of benefits with signifi-

cant network improvements, some new challenges that accompa-

nied with this innovation, such as security [6,7] and recovery from

failure, still need to be addressed thoroughly in order to maximise

the utility of SDNs [8,9] . Data plane link failure is considered to be

a manifold problem. This is because the controller needs first to be

notified about the failure and then to compute alternative routes

in order to update the affected forwarding elements. The issue of

network link failures is not a recent phenomenon, as it takes place

in everyday operation with variations in living-time and causes

[10] . However, the new architecture of OpenFlow requires more

investigation in order to eliminate the challenges that hamper its

growth. 

In order to maximise the service availability in SDNs, we define

a new approach that minimises the percentage of service unavail-

ability by using online failure prediction. This allows the network

controller to perform the necessary reconfiguration prior to the oc-

currence of failure incidents. Although a number of works on SDN

fault management have been proposed, none of them has exploited

the global view of SDNs in the context of failure prediction. With

this context in mind, we can summarise the main contributions of

this paper as follows: 

• A new network model that allows for the forecasting of link

failures by predicting their characteristics in an online fashion.

This model also demonstrates how links failure prediction can

be integrated into the process of proactive restoration with the

aid of risk analysis. 

• We provide an implementation of the new model in terms of

a couple of fault tolerance algorithms. We use simulation tech-

niques to test the efficiency of these algorithms. Our simulation

results prove that the proposed model and algorithms improve

the service availability of SDNs. 

The rest of the paper is organised as follows. Section 2 in-

troduces various SDN fault management techniques from the lit-

erature. The problem statement is highlighted in Section 3 . We

then present our network model and framework in Section 4 .
ections 7 and 8 present the experimental procedure, observed re-

ult and comparison. Finally, the summary of this paper is pro-

ided in Section 9 with some future directions. 

. Related work 

Link failure issue often occurs as a part of everyday operation.

ue its importance and the negative impact it has on the network

uality of Service (QoS), a considerable amount of research has

een conducted to analyse, characterise, evaluate and recover from

he frequent issue of link failure. While, the physical separation of

he control plane from the data plane results into two indepen-

ent entities. Both entities are susceptible to failure incidents. Ac-

ording to [11] , control plane failures are more severe than other

ailures. This is due to the significant role of network controller

n managing the whole network activities. For more details about

ontrol plane failures, we refer the interested readers to [12,13] .

owever, in this paper, we are focusing on the data plane link

ailures only. 

Communication networks are prone to either unintentional fail-

res, unplanned , due to various causes such as human errors, nat-

ral disasters like earthquakes, overload, software bugs, cable cut

nd so on, or to intentional failures, planned , that caused by the

rocess of maintenance [14,15] . Failure recovery scheme is a nec-

ssary requirement for networking system to ensure the reliabil-

ty and service availability. Generally, failure recovery mechanisms

f carrier-grade networks are categorized into two types: proactive

nd reactive . In case of link failure, resilience mechanism of SDNs

ught to redirect the affected flows in order to avoid the location

f failure and keep the system continue working despite the pres-

nce of the abnormal situation. SDN controller has the ability to

ask the data plane failure either proactively or reactively [16] ,

hile each of them has pros and cons. In this section, we discuss

urrent effort s to t ackle the dat a plane link failures. 

.1. Proactive 

In proactive, which is also know as protection , the alternative

aths are preplanned and reserved in advance (before a failure oc-

urs). According to [17] , there are three protection schemes that

an be applied to recovery from network failure: 

• One to One (1: 1): In which, one protection path is dedicated

to protect exactly one path. 

• One to Many (1: Y ): In which, one protection path is dedicated

to protect up to Y paths. 

• Many to Many ( X : Y ): In which, X of specified protection paths

are dedicated to protect up to Y working paths such that X ≤ Y .

The authors in [18] have implemented an OpenFlow monitor-

ng function for achieving a fast data plane recovery. In [19] , an-

ther protection method has been proposed through using the

penFlow-based Segment Protection (OSP) scheme. The main dis-

dvantage of this strategy is that it consumes the data plane stor-

ng capability since the more flow entries (i.e rules) to be stored

he more space will be used, however, the current OpenFlow ap-

liances in the market are able to accommodate up to 80 0 0 flow

ntries due to the limitation of the Ternary Content-Addressable

emory (TCAM), thence such a kind of solution is costly [4,16] ,

here this issue was discussed in some studies such as [20,21] . In

ddition, the installation of many attributes in the OpenFlow for-

arding elements could lead to deteriorate the process of match-

nd-action for the data plane nodes. Moreover, there is no guar-

ntee that the preserved backups are failure-free, in other words,
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f  

n  

s  
he backup path might fail before the primary one and resulting a

aste in space and time. 

.2. Reactive 

In reactive, which is also called restoration , the possible alter-

ative paths are not preplanned and will be calculated dynam-

cally when failure occurs. The authors in [22,23] presented an

penFlow restoration method to recover from single-link failures.

owever, their experiments were only conducted on small scale

etwork topologies not exceeding 14 nodes. In [24] , the authors

ave demonstrated through extensive experiments that OpenFlow

estoration is not easily attainable within 50ms, especially for large

cale networks, unless using the protection technique. 

In the same context, some works have utilised the concept of

ultiple disjoint paths to be employed as a backup. For example,

ORONET [25] is presented as a fault tolerance system for SDNs, in

hich multiple link failures can be resolved. The ADaptive Multi-

ath Computation Framework (ADMPCF) [26] for large scale Open-

low networks is produced as a traffic engineering tool that capa-

le to hold two or more disjoint paths to be utilised when some

etwork events occur (e.g. link failure). HiQoS [27] is introduced as

 traffic engineering tool towards better QoS for SDNs. HiQoS com-

uted multipath (at least two constrained paths) between all pos-

ible pairs in a network, hence a quick recovery from a link failure

s attainable. Most of the existing works did not take into account

he processing time of flow entries (e.g. insert, delete and mod-

fy) that need to be updated. Although the performance of Open-

low devices are associated with their manufacturer specification,

n [28] , the authors stated that each single flow entry insertion is

anging from 0.5ms to 10ms. However, 11ms is the minimum du-

ation that required to modify a single rule since each modification

rocess includes both deletion (old rule) and insertion (new one)

f rules [29] . There are a number of studies like [30–32] used the

penState mechanism to recover from data plane failures without

eing dependant on the network controller and hence reducing the

verload on controller and speedup the process of recovery. How-

ver, such approaches still inapplicable as the existing OpenFlow

quipment does not support such customization. 

Unlike the existing works, the authors in [33] have dealt with

roblem of minimising the time of flow entries that required to

ivert from an affected primary path to backup one. Although,

he presented algorithms did not guarantee the shortest path from

nd-to-end, but it opens a new direction that worth to be ex-

lored. Within the same context, authors in [34] produced new

lgorithms for minimising the required time to update through re-

ucing the solution search space from source to destination in the

ffected path. Similarly, in [35] an approach to divide the network

opology into non-overlapping cliques has been produced to tackle

he failure issue in local-based manner rather than global. Both

34,35] took into account the time required to compute the alter-

ative route in order to speed up the operation of update. While,

he main issue with the last three works is that it does not secure

he shortest path from source to destination. 

.3. Summary 

In summary, the previous studies produced different methods

o tackle the problem of data plane recovery from link failure inci-

ents and for more details about SDN fault management we refer

he interested readers to the recent survey [11,36] . Eventually, pro-

ection techniques are not ideal due to the TCAM space exhaustion,

hereas the latency issue is the major drawback of the existing

estoration methods. As a result, SDN fault management still needs

ore research and investigation. 
. Problem statement 

Distinctly, the existing SDN fault management techniques are

etting involved after a failure occurrence. Thus, it cannot prevent

 certain impact on traffic flows such as service unavailability. This

roblem occurs due to the delay of the convergence scheme T C .

e define T C as the required time to amend a path in response to

 failure scenario. Typically, the convergence time in SDN can be

ummarised as a combination of three factors: 

• Failure detection time ( T D ): This is the time required to detect

a failure incident. Comparing with the conventional network-

ing systems, the centralised management and global view of

SDN ease this task by continuously monitoring the network sta-

tus and get notifications upon failures. However, the speed of

receiving a notification is sometimes associated with the na-

ture of network design and mode of communication (in-band

or out-of-band) [37,38] . According to [39] , the link failure detec-

tion time is ranging from tens to hundreds milliseconds, which

may also rely on the type of commercial OpenFlow switch. 

• New route computation time ( T SP ): This is the spent time when

network controller runs a nominated shortest path routing al-

gorithm (e.g. Dijkstra [40] ) to compute the backup path (usually

for the reactive fault tolerance strategies). The T SP computation

time could reach 10s of milliseconds [34] according to how big

the network is. 

• Flow entries update time ( T Update ): This is the time required to

update relevant switches, i.e., nodes involved in the affected

path. Again, this factor depends on how many forwarding rules

need to be updated after the failure scenario where the amount

of time for every single rule could exceed 10 ms. 

Accordingly, the resulting convergence time can be calculated

hrough the following equation: 

 C = T D + T SP + 

dst ∑ 

src 

T U pdate (1)

Currently, the classical SDN fault management methods aim

o tackle the failure after its occurrence, therefore, the recovery

echanism is activated after the moment of failure and hence

ll the previous work proposals embroiled in a certain amount

f delay according to (1) . The only way to completely overcome

he three factors of (1) altogether is by handling the failure be-

ore it occurs. Therefore, failure prediction is required to provide

wareness about the potential future incidents as well as allow-

ng the controller to perform the reconfiguration action in purpose

f overriding failures before causing damage on some paths. Al-

hough there are a number of studies have put efforts on the area

f failure prediction, none of the traditional (except the work in

41] ) and/or the new generation networking systems has exploited

he information that can be gained from any prediction method

o eliminate the network incidents (e.g. link failures). To the best

f our knowledge, Vidalenc et al. [41] is the only realistic study

hat discussed the advantages of failure prediction through produc-

ng a risk-aware routing method for the legacy IP networks. While,

ur work is differ from them by building a realistic framework of

roactive failure management for SDNs. In this work, we combine

he concept of the online failure prediction with risk analysis to-

ards maximising the network service availability. 

. The proposed model 

Anticipating failures before they occur is a promising approach

or further enhancement of an SDN failure management tech-

iques, i.e., the proactive and reactive, in which the controller re-

ponds to failures when they take place. The SDN proposed model
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Table 1 

List of notations. 

Symbol Description 

src Source router 

dst Destination router 

A Service availability 

U Service unavailability 

e 
i j 

Link traversing any two arbitrary routers i and j 

Q ptr A pointer that points to first e 
i j 

in the Queue 

F Failed link set 

F R Failed/affected route set 

PF L Potential failed link set 

PF R Potential failed route set 

M Prediction alarm message 

CO Network controller 

T � Threshold of failure probability 

T ω Threshold of risk 

OF OpenFlow instruction 

TP True positive 

FN False negative 

FP False positive 

CC Cable cut per year 

SP x Any shortest path algorithm x in terms of hops 
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for anticipating link failure events is presented in this section. We

start first by outlining some of the notations we use in the rest of

the paper, as shown in Table 1 . The network topology is modelled

as an undirected graph G = (V, E) ; where V represents the finite

set of vertices (i.e. routers) in G that ranges over by { v i , v j , . . . , v z }
where { i, j, . . . , z} ⊂ { 1 , . . . , n } for n ∈ N , and E represents the fi-

nite set of bidirectional edges (i.e. links) in G that denoted as { e 
i j 
}

where each e 
i j 

∈ E is an edge that enables v i and v j to connect each

other. Now, we define the following test operational function ( OP )

over a link, which reflects the link state as follows: 

OP (e 
i j 
) = 

{
1 the link is operational 
0 otherwise 

Therefore F can be defined as follows: 

F = { e 
i j 

| e 
i j 

∈ E ∧ OP (e 
i j 
) = 0 } 

Based on G , we define a path P as a sequence of consecutive ver-

tices representing routers in the network. Each path starts from a

source router, src , and ends with a destination router, dst : 

P = (src, . . . , dst) 

We define the set Flow to represent all demand traffic flows that

need to be serviced. Each flow ∈ Flow is an instance of P , which

associates with a particular traffic that are defined by unique src

and dst . We consider flow set to be the set of all the possible paths

between src and dst that can be derived from G , which is defined

as follows: 

f low set = { P | ( first (P ) = src) ∧ ( last (P ) = dst) } 
and the definition of first and last is given as functions on any gen-

eral sequence (a 1 , . . . , a n ) : 

first ((a 1 , . . . , a n )) = a 1 
last ((a 1 , . . . , a n )) = a n 

We also consider P set as a set that contains all the admissible

paths that can be constructed from G , this means P ∈ P set and

therefore, Flow ⊂P set . When a link failure is reported in G , we iden-

tify the affected routes as follows: 

F R = { f low | f low ∈ F low ∧ ∃ v i , v j . v i , v j ∈ f low ∧ OP (v i , v j ) = 0 } 
In the same context, but this time we consider the case of when

there is a link failure prediction message m i ∈ M such that M set

denoted by { m i } n i =1 
where each m i ∈ M is defined as m i = ( ̄e 

i j 
, t) ,
here t is the time when the system receives m i . In this context,

e define the following: 

 F L = { ̄e 
i j 

| ē 
i j 

∈ E ∧ ∃ m i 
.m i = ( ̄e 

i j 
, t) ∧ m i ∈ M} 

o characterise the received link, which we use ē 
i j 

to imply that

 

i j 
∈ P F L is a shorthand, with state of potential to fail and hence it

oes not belong to F . Now, we can define the potential to fail route

et as follows: 

 F R = { ¯f low | ¯f low ∈ F low ∧ (∃ ē 
i j 
. ̄e 

i j 
∈ 

¯f low ∧ ē 
i j 

∈ P F L ) } 
here ¯f low is a flow that has at least one ē 

i j 
, in other words,

¯f low ∩ P F L 	 = ∅ . 

.1. SDN predictive model 

All the previous effort s that dealt with data plane failures have

ucceeded in mitigating the impact of failures (e.g. reduce the

owntime) rather than attempting to obviate their effect, such as

inimise the service unavailability. Network incidents that cause

outing instability, i.e., flaps, and lead to significant degrading of

etwork service availability vary [42,43] . However, in our case, we

re only concerned with data link failures. By relying on moni-

oring techniques, some failures can be predicted through failure

racking, syndrome monitoring, and error reporting [44] . Conse-

uently, a set of conditions can be defined as a base to trigger a

ailure warning when at least one of the predefined conditions is

atisfied. The following simple form illustrates rule-based failure

rediction: 

f 
〈
condition 1 

〉
then 

〈
war ning tr igger 

〉
. . . 

f 
〈
condition n 

〉
then 

〈
war ning tr igger 

〉
nline failure prediction strategies vary, such as machine learn-

ng techniques (e.g. using the κ-nearest neighbor algorithm [45] )

nd statistical analysis methods (e.g. time series [44] , Kalman and

iener filter [46] ). Such techniques can be used to predict the in-

oming events in short-term based through relying on the past and

urrent state information of a system. However, in this paper we

o not intend to propose a failure prediction solution as extensive

tudies have been conducted in this field with remarkable achieve-

ents. Instead, employing the online failure prediction as a tech-

ique to enrich the current SDN fault management is one of the

ain aims of this work. A generic overview of the time relations

f online failure prediction is presented in Fig. 2 , which presumes

he following: 

• �t d : represents the historical data upon which the predictor is

forecasting the upcoming failure events. 

• �t l : represents the lead time, which is the time in which a fail-

ure alarm is generated. It can also be defined as the minimum

duration between the prediction and failure. 

• �t w 

: is the warning time in which an action may be required

to find a new solution based on the predicted event. Therefore,

�t l must be greater than �t w 

so that the information from pre-

diction will be serviceable. In SDN, the �t w 

should be at least

adequate to provide the time required to set up the longest

shortest path in the given G . 

• �t p : represents the time for which the prediction will be as-

sumed to be a valid case. This should be defined carefully by

the network operator so as to identify the true and false alarms

after a certain time window (i.e. �t p ). 

The quality of the failure prediction is usually evaluated by two

arameters: FP and FN ; whereas, Recall and Precision are the two

ell-known metrics that are used to measure the overall perfor-

ance. 

ecall = 

T P 

T P + F N 

P recision = 

T P 

T P + F P 
(2)
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Fig. 2. Online failure prediction and time relations, Salfner et al. [44] . 

Table 2 

Controller actions based on prediction. 

Prediction Action 

TP Select an alternative route 

FP Unnecessary/needless action 

FN Call the standard failure recovery 

Fig. 3. Relation between prediction and failure sets. 
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Recall is defined as the ratio of the accurately captured failures

o the total number of the certainly occurred failures, while, Pre-

ision is defined as the ratio of the correctly classified failures to

he total number of the positive predictions. Correspondingly, SDN

ontroller actions will now associate with the predicted and un-

redicted situations as listed in Table 2 . 

On one hand, every false failure alarm will lead to an unneces-

ary reconfiguration for a particular set of routes in Flow and this

ill cause unwitting network instability. On the other hand, a con-

roller needs to deal with the undetected failures in a similar way

o the classical methods. Consequently, the more precise behaviour

f prediction, the higher the percentage of network stability and

ervice availability will be gained. Fig. 3 shows the relevance be-

ween the network model and the predictive model. 

.2. Failure event model 

We have implemented an approach of generating failure events

s it is very difficult to find a public network dataset that includes

ome useful details like failures, hence, we adopted an alternative

pproach by developing our failure model. This research intends

o enhance the SDN fault tolerance and resilience through max-

mising the network service availability. Two basic metrics have

een exploited in this model: mean-time between failure ( MTBF )

nd mean-time to recover ( MTTR ); which are essential for calcu-

ating the availability and reliability of each network repairable

omponent [5,50] . MTBF is defined as the average time in which

 particular component functions before failing, calculated from:∑ 

(start down _ time −start up _ time ) 

number of failures 
; while, MTTR is the average time required

o repair a failed component. Each component, i.e., link, is char-

cterized by its own values of both MTBF and MTTR , which are

ommonly independent from other components in the network. As

 consequence of lacking real data, some metrics (such as cable

ength and CC ) can be alternatively used for measuring the two

vailability metrics. According to [50] , MTBF can be calculated as
ollows: 

T BF (hours ) = 

CC × 365 × 24 

Cable Length 

(3) 

or instance, when CC is equal to 100 km, it means that per

00 km there will be on average one cut per year. Besides this,

he MTTR of a link is influenced by its length [51] , which expresses

he fact that the longer link has a higher MTTR value. On this basis,

e have designed the following formula for calculating the MTTR

alue for each link in the network. 

T T R (hours ) = γ × CableLength (4)

here γ is defined as a parameter indicating the time required to

x the cable, which is measured by hour/kilometer format. Due to

he fact that links are physically distributed in different locations

nd environments, therefore, γ differs from one link to another.

n other words, even if some links have the same length, their γ
ould be different as it relies on the physical location and the am-

ient conditions. Further discussion is in Section 6 . 

. Risk analysis 

According to [52] , risk can be defined as an attempt to answer

he following three questions: 

• What scenario could occur? 

• What is the likelihood that scenario would occur? 

• What is the consequence if the scenario does occur? 

We consider these questions towards formulating the risk of

ailure in SDNs. 

What scenario could occur? The scenario can be defined as any

ndesirable event such as failure. According to [53] , there are three

ain types of failure scenarios that could affect the SDN network-

ng system, these are: controller failure (including hardware and

oftware), communication components failure (i.e. node and link)

nd application failure (e.g., bugs in application code). However,

his paper considers the scenario of link failure only. Such scenario,

reaks the service down when occurs. Therefore, finding alterna-

ive path is necessary. We define the set of link failure scenarios

s F ranged over by variables f 1 , f 2 , . . . , f n ∈ F . 

What is the likelihood that scenario would occur? The likelihood

hat a failure scenario disrupts the network services is conditional

n the occurrence of the scenario. We address this question by the

id of online failure prediction that is in our case working based on

 scenario’s failure probability, p . Each failure scenario is associated

ith a p value that by nature ranges between 0 and 1, this will be

urther discussed in Section 6 . 

What is the consequence if the scenario does occur? We address

his question by computing the percentage of loss or consequence,

 , that might potentially happen when a failure scenario is pre-

icted at an early stage. Each failure scenario might lead to some

isconnections and service disruption. Therefore, the severity of

dverse effects of each failure scenario varies. For instance, c 1 that

as caused by f 1 might be different from c 2 that was caused by f 2 ,

hich would reflect the outage costs that would result from dis-

upting some of the network connections. 
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Table 3 

List of failure scenarios. 

Scenario Probability Consequence 

f 1 p 1 c 1 
f 2 p 2 c 2 
. . . 

. . . 

. . . 

f n p n c n 
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Over a period of time, these questions would make a list of out-

comes as exemplified in Table 3 , where each i th row in the table

can be represented as a triplet, i.e., 〈 f i , p i , c i 〉 . 
Risk can be estimated by using such information as follows: 

Risk = {〈 f i , p i , c i 〉} , i = 1 , 2 , . . . , n (5)

Since we are considering the only link failure scenarios, f (e 
i j 

) ,

we shall refine the definition of risk in (5) . Accordingly, we rede-

fine the risk to be the chance of damage that is determined by the

combination of the probability of link failure and its consequence.

Risk f (e 
i j 

) 
= p (e 

i j 
) × c (e 

i j 
) (6)

To deduce the risk value, the two factors of (6) , i.e., p and c ,

can be assessed independently. On one hand, the probability, p ,

depends on the efficacy of the online failure predictor at deter-

mining the likelihood of the incoming failure scenarios, which is,

in this study, defined by a selective failure probability threshold

value, T �. On the other hand, for the consequence, c , it can be

measured based upon the percentage of affected routes that would

result from the anticipated scenario. In our case, we take the def-

inition of such consequence one of the global network topological

characteristics, namely Edge Betweenness Centrality (EBC) [47] . This

is due to the fact that EBC is a direct indicator of the number of

paths that would fail as a consequence of the failure of a particular

link, therefore, providing a natural measure of risk consequence. 

The EBC of a link e 
i j 

is the total number of shortest paths be-

tween pairs of nodes that traverse the edge e 
i j 

[47] , which can be

formulated as follows: 

EBC e 
i j 

= 

∑ 

v i ∈ V 

∑ 

v j ∈ V 

�v i, v j e i j 

�v i, v j 
(7)

where �vi, vj denotes the number of shortest paths between nodes

vi and vj , while, �v i, v j e i j 
denotes the number of shortest paths be-

tween nodes vi and vj and go through e 
i j 

∈ E. For instance, Fig. 4

demonstrates an example topology with an EBC value for each link

in the network, which has been calculated based on Ulrik Bran-

des algorithm [48] . For instance, the EBC of e 
12 

is calculated by the

number of shortest paths containing the edge divided by all possi-

ble paths. Therefore, EBC e 
12 

= 0 . 4 . This is because there are 20 pos-

sible paths in the example topology and 8 of them pass through

the edge e . Given that network controller knows the demand

12 

Fig. 4. Topology example with different EBC values. 
raffic matrix between all pairs in the network, i.e., Flow . There-

ore, Eq. (7) in our case is congruent with the following: 

BC e 
i j ∈ M 

= 

� f low 

e 
i j 

� f low 

(8)

here �flow 

denotes the total number of paths in Flow set, while,

f low 

e 
i j 

denotes the number of paths in Flow set and pass through

 

i j 
∈ M. 

With the above context in mind, the higher the EBC value of

 

i j 
, which is a normalised value between 0 and 1, the more critical

he link is and therefore, the higher the score indicating the con-

equences. This is because the outcome of failure for a link with

igh EBC will definitely lead to a huge number of path failures and

herefore a higher percentage of negative impacts on the availabil-

ty of network services. 

Our goal in this analysis is to gauge the percentage of possi-

le loss and provide such information to the concerned decision-

aking mechanism, i.e., the routing mechanism in our case. For

ore details about the existing risk analysis methods that fit SDNs,

e refer the interested readers to [49] . 

. The proposed framework 

From a high level point of view, Fig. 5 illustrates the main com-

onents of our proposed framework where the Smart Routing (SR)

nd Prediction Model components are the primary contribution of

ur work. We discuss next in more detail the components we used

nd developed in this framework. 

.1. SDN controller 

The proposed framework supports POX controller [54] , which is

n open source SDN controller written in python and it is more

uitable for fast prototyping than other available controllers such

s [55] . The standard OpenFlow protocol [3] is used for establishing

he communication between the data and control planes, whereas

he set of POX APIs can be used for developing various network

ontrol applications. 
Fig. 5. Architecture of the proposed framework. 
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Table 4 

Service availability and network flows relation. 

Event Flow src → dst accessibility T C Serviceability Notes 

– flow x Yes – ✔ Path is working 

flow x ∈ F R flow x No T D ✖ Path is not working 

flow x ∈ F R flow x No T SP ✖ Search for alternatives 

flow x ∈ F R flow x No T Update ✖ Path is restoring 

– flow x Yes – ✔ Path is restored 
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Algorithm 1: Baseline routing (BR). 

On Normal : ∀ f low ∈ F low : Set Primary Path as flow. f low ∈ 

SP D ( f low set ) 

On Failure : Do the following procedure 

1 if Link failure reported then 

2 foreach e 
i j 

∈ F do 

3 Compute: F R 
4 end 

5 do 

6 OF Remov e ( f low ) 

7 f low set := f low set − { f low } 
8 f low := SP D ( f low set ) 

9 OF Install ( f low ) 

10 LF ← f low 

11 F R := F R − { f low } 
12 while F R 	 = ∅ ; 
13 end 

14 c := 0 

15 if Link repair reported then 

16 do 

17 if f low c is currently optimal then 

18 Do nothing 

19 c := c + 1 

20 end 

21 if f low c is currently sub-optimal then 

22 OF Remov e ( f low c ) 

23 f low c := SP D ( f low c set 
) 

24 OF Install ( f low c ) 

25 LF := LF − { f low c } 
26 c := c + 1 

27 end 

28 if number of links = E len then 

29 LF := empty 

30 end 

31 while c � LF len ; 

32 end 

t  
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.2. Smart routing 

Firstly, this module is responsible for maintaining and parsing

he underlying network topology. Topology parameters such as the

umber of nodes and links, way of connection and port status

an be detected via the Link Layer Discovery Protocol (LLDP) [56] ,

hich is one of the vital features of the current OpenFlow specifi-

ation. The openflow.discovery [57] , which is an already developed

OX component that can be used to send specially crafted LLDP

essages out of OpenFlow nodes so that the topological view over

he data plane layer can be built. 

This module will then convert the discovered network topol-

gy into a graph G representation for efficient management pur-

oses. To do so, we utilised the Networkx tool [58] , which is a pure

ython package with a set of powerful functions for manipulating

etwork graphs. When the network starts working and after shap-

ng the data plane topology, the shortest path for each flow ∈ Flow

s configured by the appointed SP x algorithm, which thereafter is

tored in the Operational Routes table that is specified to contain

ll the desired working (healthy) paths. 

In order to perceive how the link failure incident could affect

he configured paths from the perspective of service availability

nd convergence time, we provide a simple example in Table 4 in

hich the service deterioration of the flow x due to link failure in-

ident is highlighted. 

To maintain the Operational Routes table, two algorithms have

een implemented each with its own view in respect to keep the

low maintained. Algorithm 1 depicts the baseline shortest path

outing strategy (henceforth called Baseline Routing (BR)), which

s currently performed by the SDN controller. We specify Dijkstra’s

40] algorithm, with complexity O (| V | + | E| log | V | ) , as the short-

st path finder approach for Algorithm 1 , which we denote by SP D 
nstead of SP x . So, the SP D is a Dijkstra function that can be applied

n any flow set to return only one unique shortest path. 

When the OpenFlow controller reports a link failure event, ev-

ry path suffering from that failure will be detected and then two

perations will be issued by the controller. First, a Remove , denoted

y OF Remov e , command is sent to all the routers that belong to each

ailed path in Flow as a step to weeding out the incorrectly work-

ng entries, then an alternative route will be computed for every

ffected flow . The new flow entries of the alternative path are then

orwarded to the relevant routers of each flow through the Install ,

enoted by OF Install , command. Each modified flow , i.e., assigned to

lternative, will be stored in a special set that is called the Labeled

low ( LF ), where: LF ⊂Flow and with length of n . This is to indicate

hat each flow ∈ LF is in a sub-optimal state. The recovery from

ink failure procedure is demonstrated in line (1–13). However, the

lgorithm also includes the reversion process after a failure is re-

ormed (line 15–32), which is no less important than the recovery

rocess [59] , and also to take into account the percentage of rout-

ng flaps that is necessary for later analysis. In fact, we developed

his algorithm for comparison purposes only against Algorithm 2 .

herefore, it does not reflect a contribution of this paper. 

In contrast (and unlike Algorithm 1 ), Algorithm 2 is one of the

ain contributions of this work that exploited the prediction in-

ormation towards enhancing the service availability and the fault
 t  
olerance of SDNs. This algorithm depends on Bhandari’s algorithm

or finding K edge-disjoint paths [60] , which has been utilised as

 complementary to build the smart routing strategy. We denoted

handari’s algorithm as SP B in place of SP x . 

Thereon, we consider the SP B as a function that is specified to

ompute 2 link-disjoint paths with the least total cost for any given

air of nodes (i.e. src and dst ) or flow set . For the purpose of distin-

uishing between the two returned paths of SP B , we denote the

rst path as f low b 1 
and the second disjoint one as f low b 2 

. The

ime complexity of SP B is different from the SP D , which is a polyno-

ial that is equivalent to O ((K + 1) . | E| + | V | log | V | ) . The pseudo

ode of smart routing is demonstrated in Algorithm 2 , in which the

f low b 1 
is initially selected to represent the primary path for each

ow in the network. 

The network controller will then start listening to the predic-

ion module, which will be discussed in the next section, for the
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Algorithm 2: Smart routing (SR). 

Input : Network topology G (V, E) , M 

Output : P F R ≈ ∅ 
1 ∀ f low ∈ F low : Set Primary Path as f low b 1 

. f low b 1 
∈ 

SP B ( f low set ) 

2 if M = { m } then 

3 P F L ← ē 
i j 

4 end 

5 foreach ē 
i j 

∈ P F L do 

6 Compute: P F R 
7 end 

8 EBC ē 
i j 

= 

PF R len 
F low len 

9 Risk ē 
i j 

= p( ̄e 
i j 
) × EBC ē 

i j 

10 if Risk ¯e 
i j 

� Risk T ω then 

11 do 

12 OF Install ( f low b 2 
. f low b 2 

∈ SP B ( f low set )) 

13 OF Remov e ( f low b 1 
. f low b 1 

∈ SP B ( f low set )) 

14 while P F R 	 = ∅ ; 
15 Wait: �t p 
16 if ē i j ∈ F then 

17 Mark as: T P 
18 LF ← P F R 
19 else 

20 Mark as: F P 
21 do 

22 OF Install ( f low b 1 
. f low b 1 

∈ SP B ( f low set )) 

23 OF Remov e ( f low b 2 
. f low b 2 

∈ SP B ( f low set )) 

24 while P F R 	 = ∅ ; 
25 end 

26 end 

27 P F R = ∅ 
28 if [ F = (e 

i j 
) ∧ (e 

i j 
/ ∈ M) ] ∨ [ F = ( e 

i j 
) ∧ (e 

i j 
∈ M ) ∧ (Risk ¯e 

i j 
< 

Risk T ω ) ] then 

29 Mark as: F N 

30 Call Algorithm1 
31 end 

32 if Link repair reported then 

33 Call Algorithm1 
34 end 
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potential of future incidents. When a new message ( m ) is received,

the controller will firstly construct the potential failed list, which

contains the information about link which is expected to fail in

the near future as described in (line 2–4). Secondly, the route (or

routes) which might be affected according to the predicted fail-

ure message will be computed as a preparatory step to replace

them (line 5–7). After identifying the routes that may possibly fail,

the EBC for the predicted link will be calculated as a step towards

measuring the risk (line 8–10). If the risk value is below the risk

threshold, then the prediction information will be ignored and no

action will be taken. Otherwise, the flow entries of the newly com-

puted disjoint path from the second step will be installed through

using the Install command. This is done by adjusting the disjoint

path rules with lower priority than the primary path to avoid the

conflict of matching and action process. Following this step, the

forwarding rules of the risky primary paths will need to be deleted

in order to use TCAM resources efficiently. 

This needs to be done in a similar procedure to the installation

but with the Remove command as demonstrated in (line 11–14).

After swapping the primary path due to an expected failure, this
ction will be considered as the correct decision for a certain pe-

iod of time (i.e. �t p ) as indicated in line 15. To examine the sub-

tantiality of the changing routes decision, the link that was antic-

pated to go down within �t l will be compared against the fail-

re set F . On one hand, and if the link exists, then the prediction

ill be marked as TP , and each flow ∈ PF R will be labeled as sub-

ptimal, in addition, the reconfigured paths will store in LF (line

6–18). On the other hand, the prediction will be considered as

P and in such a case it is necessary to reset the primary path to

ts initial state (i.e. optimal) as deliberated in (line 19-25). In case

hen there is a failure that was not captured by the prediction

odule, such a case is considered as FN and the failure in such

ituations is tackled by calling Algorithm 1 as outlined in (line 28–

0). Finally, Algorithm 1 will also be invoked when a failed link is

epaired (line 32–34). 

.3. Prediction module 

In this work, this module is placed on top of the parsed net-

ork topology state that gained from the network controller as

 result of lacking historical data. We consider each link as an

ndependent object of link class. The link class contains a set

f attributes, which currently includes eight attributes as shown

n Fig. 6 . The link attributes are used to control the up and

own events. In the current implementation, we used the prior-

ty queue, Q , as a pool to hold all the non-faulty links. On one

and, Eqs. (3) and (4) are essential for computing the two static

ttributes ( MTBF and MTTR ) of each link. For (3) , we rely on the

opologies information in Section 7.3 and by assuming that CC

quals the minimum cable length in a network. While, for (4) we

sed the uniform distribution to generate γ for each link indepen-

ently. On the other hand, the six remaining ones are described as

ollows: 

• ID : a numerical unique value (i.e. 1 , 2 , . . . , n ) assigned to the

link to represent the link identification number. 

• F_Count : a counter to contain the number of times the link has

failed. 

• Length : represents the link’s length in km, which is derived

from the topology specification. 

• Next_F : refers to the next time to failure of link, which con-

trols the process of moving the link into and out-of the Q . In

other words, this attribute determines the link life span in the

Q where the link will be dequeued when its Next_F equals to

zero. 

• Probability_F : registers the current failure probability, p , of the

link. For instance, the Probability_F of the link ( j ) is arrived

through: 
F _ Count(ID j ) ∑ n 

i =1 F _ Count(ID i ) 
× 100 , where n is the length of Q . 

• Status : reflects the current state of the link as either opera-

tional or faulty. 

On this basis, we have placed our online predictor scheme, i.e.,

epresented by Algorithm 3 , on top of the priority queue in order

o send encapsulated messages about the links which satisfy the

ollowing two conditions (as described in line 2–9): 

� The probability of failure is greater than or equal to the

threshold T �. 

� The leading time (i.e. �t l ) is less than or equal to the next

time to failure . 

Failure Decision (FD) is a Boolean function that randomly gener-

tes True and False values for each link that satisfies the threshold

ondition, i.e., T �. When FD is True, a failure event is generated by

utting the current link, i.e., F (Q ptr ) 
, down if �t l is satisfied. Oth-

rwise, when FD is False then no failure event will be generated.

lgorithm 3 is used only for evaluation purposes so that True and
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Fig. 6. Representation of links in priority queue. 

Algorithm 3: Alarm message generator ( M ). 

Input : G (V, E) 

Output : M 

1 while ( Q! = ∅ ) do 

2 if P robability _ F (Q ptr ) 
� T � then 

3 if FD = True then 

4 Go To: 8 

5 else 

6 Go To: 15 

7 end 

8 Compute: �t l 
9 if Next _ F (Q ptr ) 

� �t l then 

10 Wait: Next _ F (Q ptr ) 
− �t l 

11 Generate: (m, ̄e 
i j (Q ptr ) 

) 

12 else 

13 �t l is not satisfied 

14 end 

15 end 

16 Wait: Next _ F (Q ptr ) 
= 0 

17 end 
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alse alarms can be made. Hence, the actual link failure prediction

ethod is outside the scope of this paper. 

. Experimental design and implementation 

Since smart routing is aimed to enhance the SDN fault toler-

nce in the context of network service availability, we have imple-

ented some metrics for fair comparison between the traditional

DN and the proposed system. We also show in this section the

dopted network topologies that have been utilised in our experi-

ents. 

.1. Availability measurements 

Considering the convergence time that is required to shift from

 failed or non-operational path to an alternative or backup one,

hich conforms with Eq. (1) . This convergence process is defi-

itely drive to some damages in the network availability and caus-

ng service unavailability. This issue results from the unavailability

f the affected path to the service for a certain amount of time,

s demonstrated in Table 4 . In order to identify the serviceable,

hich are denoted by “Yes”, and unserviceable, which are denoted

y “No”, flows with respect to some failure events, we formulated

his problem as follows: 

( f low ∩ Q ) = f low ⇒ Yes 
( f low ∩ Q ) ⊂ f low ⇒ No 

here, “Yes” and “No” can be obtained by intersecting each

ow ∈ Flow against the Q . The flow is subjected to “Yes” when all

ts forming edges reside in the Q , otherwise, the flow will be con-

idered as unserviceable and subjected to “No”. By knowing the

umber of serviceable and unserviceable flows , the service unavail-

bility and thus the service availability can be measured. 

The service unavailability of SDN ( U SDN ) over a given interval

ime with a certain number of failure events, which are denoted

y ev , can be arrived through the following: 

 SDN (F l ow, G ) = 

∑ e v 
i =1 f l ow ∈ F low No 

e v × F low len 

(9)

hereas, for smart routing it is important to further consider the

mpact of Recall values. Hence, the service unavailability of SR ( U SR )

an be arrived by the following: 

 SR (F low, G ) = (1 − Recal l ) × (U SDN (F low, G )) (10)

onsequently, the availability A x , with x = SDN or SR, can be ar-

ived through the following: 

 x = 1 − U x (11) 

.2. Routing instability measurements 

In traditional networks, routing protocols (e.g. IGP [61] ) perform

wo routing changes as a reaction to every single failure, one time

hen a failure occurs and another when a failure is repaired. In

act, both changes are essential for the QoS where the first change

s for the purpose of service availability, while, the goal of the sec-

nd one is to return back from the backup (i.e. sub-optimal) to

he primary (i.e. optimal) path again. In contrast, SDN architecture

rings centralisation and programmability to the scene, therefore,

raditional distributed protocols are independent of the SDN archi-

ecture. Maintaining the optimal path (e.g. minimum hops in our

ase) of each flow will require a continuously adaptive strategy that

ill be responsible for replacing each sub-optimal flow with the

ptimal one after it becomes serviceable. To do so, we assume that

ach alternative flow is additionally stored in LF as mentioned in

ection 6 . 

For an SDN, the routing flaps (denoted by RF ) can be measured

y means of link up (denoted by u f ) and down (denoted by d f ) as

ollows: 

F SDN = 

∑ 

f low ∈ LF 

u f + 

∑ 

f low ∈ F R 
d f (12)

n one hand, and according to (12) , after each link down event;

 new route for each flow ∈ F R is required, which then leads to

 first routing change for each flow . On the other hand, and after

ach link up announcement, the controller will need to check the
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Fig. 7. Flow chart of routing flaps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Experimental topologies. 

Table 5 

Topologies’ characteristics. 

Topology Nodes Edges Min len (e 
i j 

) Max len (e 
i j 

) 

janos-us 26 42 145 km 1127 km 

germany50 50 88 36 km 236 km 

waxman 70 140 15 km 1099 km 
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b  

c  

T  

e  

a  

i  

r  

t  

m  

i  

g  

l  

l  

i  
state of each labeled flow in LF to determine if itâs still the optimal

choice. If so, then no change will be made, otherwise, rerouting is

required and therefore it will result in another routing change. 

However, for the smart routing mechanism, it is necessary to

consider the three prediction parameters also (i.e. FN, TP and FP ),

as follows: 

RF SR = 

∑ 

f low ∈ F R 
F N f + 

∑ 

f low ∈ PF R 

T P f + 

∑ 

f low ∈ PF R 

F P f + 

∑ 

f low ∈ LF 

u f (13)

According to (13) , the FN f is equivalent to d f in (12) as it re-

flects the actual failure events that have not been captured by the

prediction module, while the remaining are as follows: 

• Each true prediction will lead to a first reroute flap that gives

the advantage of avoiding an upcoming failure event. While, the

second flap will be similar to the scenario of RF SDN through in-

serting the flow into the LF and the next flap builds upon the

link restoration u f . 

• Each false prediction leads into two useless flaps, one when the

prediction triggers an alarm, in such a case each potential flow

will be added to the Temporary Labeled Flow set ( TLF ), as a tran-

sient step before it recognises the prediction was false. The sec-

ond flap will perform when �t p expires. 

We provide a deep overview of the process of measuring the

number of routing flaps in the flow chart of Fig. 7 , which also

shows how the LF is adjusted in the scenario of the two algo-

rithms, i.e., Algorithms 1 and 2 . Since all actions are associated

with the link state, in this work, we utilise the OpenFlow proto-

col to reflect the data plane links changing state. This is by relying

on the Loss of Signal (LoS) that detects link failures by depending
n OpenFlow PORT-STATUS messages. In addition, the proposed

rediction module produces further information about the poten-

ial failures. Both LoS and prediction information will be delivered

o the network controller through the Updater in order to apply the

ppropriate action as illustrated in the above flow chart. 

.3. Simulated network topologies 

In order to evaluate the proposed method, we have modelled 3

etwork topologies as depicted in Fig. 8 . Both, (a) janos-us and (b)

ermany50 represent real network topology instances that defined

n [62] . However, (c) waxman is a synthetic topology that is cre-

ted by the Internet topology generator Brite [63] through using

he well-known Waxman model [64] . Waxman’s model is a geo-

raphical approach that connects the distributed routers in a plane

n the basis of the distance among them, which is given by the

ollowing formula: 

 ({ v i , v j } ) = β exp 
−d(v i , v j ) 

Lα (14)

here 0 < α and β ≤ 1. d represents the distance between v i 
nd v j , while L represents the maximum distance between any two

iven nodes. The number of links among the generated nodes is

ssociated with the value of α in a directly proportional manner,

hile the edge distance increases when the value of β is incre-

ented. We used Brite to generate a large-scale network topology

n comparison to the others (e.g. when the number of edges or

odes ≥ 100). The characteristics of all the modelled topologies

re detailed in Table 5 . 

.4. Implementation 

In order to validate our approach, the proposed framework is

uilt on top of the POX controller. The implementation code of the

urrent framework is made available on the Github platform [65] .

he proposed framework is evaluated by using the container-based

mulator, Mininet [66] . Mininet is a widely used emulation system,

s evidenced in a recent survey [4] , for evaluating and prototyp-

ng SDN protocols and applications. It can also be used to create

ealistic virtual networks, running real kernel, switch and applica-

ion code, on a single machine (VM, cloud or native). Our experi-

ents were designed based on the topologies that we illustrated

n the preceding section. Since one of our experimental topolo-

ies was designed via Brite, we utilised the Fast Network Simu-

ation Setup (FNSS) [67] . FNSS is a python-based toolchain simu-

ator that can be used to facilitate the process of network exper-

ments. It provides a wide range of functions and adapters that
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Fig. 9. Flow diagram of a link’s life cycle in the Queue. 
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llow network researchers to parse graphs from different topol-

gy generators (e.g. Brite) in order to be compatible with and/or

o interface with other simulator/emulator tools, such as Mininet.

ased on the failure event model ( Section 4.2 ), the general reli-

bility theory [68] has been utilised to generate failure events

sing the exponential distribution ( mean = MT BF ) for the next

ime to failure of each link, and lognormal distribution E ( μ, σ )

ith μ = log (MT T R ) − ((0 . 5) × log (1 + ((0 . 6 × MT T R ) 2 /MT T R 2 )))

nd σ = 

√ 

log (1 + ((0 . 6 × MT T R ) 2 /MT T R 2 for time to recover. Re-

arding, failure anticipation, false and true positive have been gen-

rated during the simulated time using the uniform distribution

ollowing the specified threshold value. Fig. 9 summarises the sim-

lated link queuing system that is correlated to the two metrics

f reliability, i.e., MTBF and MTTR. In order to dispatch the predic-

ion information that is necessarily important to the SR module,

he distributed messages framework (ZeroMQ [69] ) was exploited

o carry the alarm messages, M , from the prediction module to

he network controller interface. In some network flow conditions

t will activate the SR module to begin a possible reconfiguration.

n the emulation environment, we employed two servers; one acts

s the OpenFlow controller and the other to simulate the network

opologies. For each server, we used Ubuntu v.14.04 LTS with Intel

ore-i5 CPU and 8 GB RAM. 

. Comparison and key advantages of SR 

In this section, we present comparison and evaluation of the

roposed method versus the default SDN technique (i.e. BR). To

o so, the study has been conducted on the three topologies that

ere summarised in Table 5 . To simulate the three topologies, we

an the emulator for 144 h, i.e., each experimental topology was

imulated in the system for 48 h. Fig. 10 shows the obtained re-

ults from the three topologies based on parameter settings of

 � = 0 . 25 , T ω = 0 . 1 , �t l = 120 s and �t p = 30 s. Keep in mind, and

s discussed earlier, the T � and T ω values can be selected by the

etwork operator or by using additional algorithms (i.e. machine

earning) to identify the near optimal values. Since the main goal

f smart routing is to enhance the network service availability, we

lot for each network that which gives the BR and SR mechanisms

or the service availability percentage (Y-axis) and the rate of rout-
Fig. 10. Routing flaps and
ng flaps (X-axis). Furthermore, for SR, the performance of the on-

ine failure predictor represented by the values of Recall and Pre-

ision are considered and reported respectively to each topology.

n fact, Recall value has a crucial impact on the service availability

n the SR scheme, however, Precision value has an impact on the

nnecessary routing changes. 

On one hand, it can be clearly observed that SR outperformed

he BR in providing network service availability for all test cases.

n spite of the low Recall values (i.e. 0.2-0.3), there is still a gain in

ervice availability. It can also be observed that janos-us topology

ained the highest improvement percentage in the service avail-

bility and this is because its Recall value is greater than that of

he other topologies. 

On the other hand, the rate of the routing flaps generated by SR

s always higher than the BR. This disadvantage comes as a trade-

ff for improving the network service availability. Given that the

outing instability by means of unnecessary flaps is correlated with

he value Precision , we have measured the only useless flaps that

ere generated during the simulation time and for each topology

s shown in Fig. 11 . Fig. 11 (a) shows the only unnecessary rout-

ng changes that have been reported based on the FP rate of each

opology, where each single FP is associated with two useless flaps,

hat is, one for the reconfiguration and the other for the reversion.

owever, Fig. 11 (b) shows the percentage of useless routing flaps

or each topology in comparison with the total number of flaps. In

he worst case scenario the routing flaps did not exceed 25%. Al-

hough janos-us topology has the highest Precision value, it yielded

 relatively high percentage of useless flaps and this is because the

umber of links in the topology is low, hence, it is highly likely

hat each single link is associated with a large number of routes

n contrast to the other two topologies. It is also clearly evident

hat the online failure prediction plays a significant role in both

ervice availability (by TP ) and routing flaps (by FP ). Based upon

he experiments and simulations, we have some observations, as

ollows: 

• Some alternative routes are considered as optimal after receiv-

ing an update message, even though the received update is not

involved in its conforming path. The reason is that the current

system defines the optimal path based on hops number. There-

fore, each alternative path that has the same number of hops

as the optimal one will be considered to be an optimal path. It

might not be the case if the adopted routing constraint is not

the number of hops, i.e., using a specified cost function with

different parameters such as bandwidth, congestion, energy, etc.

• In some cases it is barely able to find two-disjoint paths and

therefore, sometimes if a path faces two successive failure

alarms on its forming links, then no change will be made.

Hence, we used ( ≈ ) instead of ( = ) in the output of
 service availability. 
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Fig. 11. Routing instability measurements. 
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Algorithm 2 , to imply that an entirely empty PF R cannot be al-

ways guaranteed. 

• It is also possible that each flow ∈ LF may face one or more

risky links, thus in such a case the entangled flow state will be

the same (i.e. sub-optimal). 

• In some cases and when the Next _ F < 2 min , the controller will

ignore the prediction if it is generated, as in such cases the

�t l is not satisfied and therefore the controller will not have

enough time for the reconfiguration. 

9. Conclusion and future directions 

This paper has demonstrated the promise of using online fail-

ure prediction to enhance the SDN service availability. Since the

network service availability is a well established research area,

its implications for OpenFlow networks are limited. We presented

Smart Routing to tackle the problem of data plane link failures in

SDNs. The proposed approach differs from the existing contribu-

tions by allowing the SDN controller to have a time window in

order to reconfigure the network before the anticipated link failure

takes place. With such approach, the interruption of the network

services caused by link failures can be reduced and therefore it

brings significant benefits to the network service availability. We

demonstrated how the proposed model can be implemented us-

ing a couple of new algorithms that extract the risky links from

the currently-used paths and hence none of these paths will be af-

fected when a risky link fails. The performance of the proposed ap-

proach is tested and evaluated through extensive simulation exper-

iments on various real and synthetic network topologies conducted

with the link failure event model. The experimental findings show

clearly the effectiveness of the proposed method in enhancing the

SDN service availability. Unfortunately, the flaps rate that can be

resulted from the failure prediction may lead to network instabil-

ity, especially when it reaches a high rate. For this purpose, we

measured the percentage of the unnecessary routing flaps and in

the worst case scenario, the rate was 25%, which is nearly reason-

able in practice. 

As future work, we will position the study in the setting of ma-

chine learning and signal processing towards achieving that the de-

cision will be made according to the optimal threshold value of the

probability of failure. We are also planning to extend this study

to consider some disaster situations where drastic failure scenar-

ios can lead to multiple link failures with high network availability

degradation and packet loss rates. In such scenarios, one needs to

consider different, possibly less predictable, metrics of failure. Ad-

ditionally, we plan to consider more complex scenarios where we

consider not only link failures but also other forms of failure, e.g.

controller, node and application failures. 
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