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Abstract—The problem of automatically extracting novel and
interesting knowledge from large amount of data is often per-
formed heuristically when pattern extraction through classical
statistical methods is found hard. In this paper an evolutionary
approach, based on Differential Evolution, is proposed, which
is able to perform the automatic discovery of comprehensible
classification rules as a set of IF...THEN rules over a database
of Multiple Sclerosis potential lesions. Moreover, this tool also
determines which the most discriminant database attributes
are in categorizing instances. Therefore, this evolutionary tool
provides an efficient decision support system for clinical decisions,
that could be a useful tool for medical experts to help them gain
insight into the reasons for assessing the abnormality of a lesion.

Index Terms—Multiple Sclerosis, classification, knowledge ex-
traction, IF...THEN rules, Differential Evolution.

I. INTRODUCTION

Multiple sclerosis (MS) is a long-lasting and disabling
disease of the central nervous system which disrupts the infor-
mation flow within the brain, and between the brain and body
[1]. This results in several signs and symptoms, which include
physical, mental, and in some cases psychiatric problems.
Some such symptoms may be double vision, blindness in
one eye, muscle weakness, sensorial or coordination troubles.
MS is the most common autoimmune disorder affecting the
central nervous system. In 2013, about 2.3 million people were
affected worldwide, and about 20,000 people died from it. MS
is complex and there is no single test that is proof-positive for
its diagnosis. Although its not the sole test used to diagnose
MS, magnetic resonance imaging (MRI) that makes detailed
pictures of the body structures is very commonly used to
visualize lesions [2] and represents a giant step in confirming
a diagnosis and in evaluating its evolution. The use of MR
images as a marker for MS needs the exploitation of all the
knowledge of experts to correctly identify MS lesions.

In general, the process of finding out actual lesions for
MS can be seen as a pipelining of three-task procedure: the
segmentation of the MRI images into groups of homogeneous
pixels/voxels representing tissues, the labeling of those tissues,
and finally the actual classification step, meaning with this the
assignment of each potential lesion detected.

Yet, this process is very laborious because of the high
number of MR images that must be examined and of the
variability in the number of MS lesions per image, as well
as in their size and spatial distribution. Furthermore, the result
of the analysis of an MR image is a set of potential lesions,

some of which are actually lesions whereas others are not.
This is a typical classification task, that has been up to now
carried out prominently by human experts only.

Classification [3] is a well–recognized data mining task that
uses supervised learning methods to predict the class which an
instance belongs to. The operating way consists in a training
and a testing phase. During the former a set of input instances
(training dataset) is used to find a classification model that
assigns them to predefined classes. Afterwards, the induced
model is employed to classify the unknown instances (testing
dataset) into their corresponding classes. The classification is
of prime importance in the medical domain as an effective
support in decision making with respect to diagnosis.

In this paper the goal is to design and implement an
automatic tool, based on a Soft Computing methodology, that
can be a useful decision support system (DSS) to doctors in
their classification decisions about whether or not lesions in a
patient’s tissues evidenced by the segmentation and labeling
steps are related to the presence of Multiple Sclerosis.

Not only should such a tool accurately discriminate between
healthy and ill people, it should also support doctors by letting
them have an insight into the reasons for this kind of predic-
tion. This latter issue can be accomplished by automatically
extracting explicit knowledge from the data and providing
doctors with it under an easy–to-understand form. Our choice
has been to organize such knowledge under the form of a set
of explicit IF–THEN rules, which is typically easy to interpret.
The set of rules will consist of some rules describing the
conditions for illness and some other implying healthiness.

Hence, our approach is different from others in the literature
[4], [5], [6], [7], in which Soft Computing–based tools are
presented which often offer good performance in terms of
classification rate, yet they cannot explain the reasons for their
decisions, and, as such, are of little utility to doctors. Such
tools are frequently termed as black-box classifiers.

Since our approach aims at supporting medical decisions,
we do believe that its explicative feature is of very high signif-
icance to doctors. In fact, from our experience in cooperating
with doctors, we have learned that they very seldom have
confidence in automatic tools, and this is especially true for
the ones that do not provide any interaction with them.

During the last decade, Differential Evolution (DE) [8], [9]
has achieved great success on many real–world application
problems [10]. DE is an evolutionary algorithm (EA) that has
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gained popularity because of its ease of implementation, of the
request of few control parameters and of its low complexity
[11]. Furthermore, such a technique often performs better, with
regards to convergence speed, accuracy, and robustness, than
several EAs, and many among the stochastic and direct search
techniques for global optimization when used over benchmark
problems and real-world ones [10], [12].

At our knowledge, apart from few papers [13], [14], [15],
never has DE been employed for extracting comprehensible
classification rules from databases. In fact, all other DE-based
classification tools in the literature either merely look for
centroids for the database classes instead of extracting explicit
knowledge as rule sets [16], [17], [18], [19], or are hybrid
systems in which DE just aims at optimizing some parameters
while classification is done through other mechanisms [20],
[21], [22], [23], [24].

Unlike the Pittsburgh approach [13], [14], [15] used to
extract in one step the best set of explicit IF–THEN rules for
all the classes, the approach presented within this paper finds
separately the best set of rules for each class. The resulting
algorithm is referred to as DE for Classification (DEC).

The paper is organized as follows: Section II illustrates
the DE technique; Section III presents DE applied to the
classification problem, and the DEC algorithm. In Section IV
the experimental findings are shown together with the resulting
explicit rules, and a discussion is presented. Finally, Section
V is dedicated to conclusion remarks and future works.

II. DIFFERENTIAL EVOLUTION

Differential Evolution is a stochastic optimization algorithm
[8], [9] based on a set, called population, of solutions, said
individuals, which are represented as vectors of real numbers.

The basic idea underlying DE is in the use of difference
vectors. A difference vector is computed as the difference
between two population individuals. Essentially, DE creates
new individuals, said trials, through the addition of one or
two weighted difference vectors to another member in the
population. A trial vector possessing a better objective function
(fitness function) value than the original individual will replace
this latter. A recombination mechanism, aimed at building
trial vectors through the use of components of individuals in
the current population, shuffles information about successful
combinations, which makes the search for an optimum be
focused on promising areas in the space of solutions.

In more depth, to face an optimization problem with n
real–valued parameters, DE starts by randomly initializing a
population of l individuals each consisting in n genes, each of
which contains a real value. Then, from the current population,
l individuals for the new population are obtained through
a modification scheme, and this is repeated generation after
generation. Many modification schemes exist. DE inventors
[8], [9] advanced a naming–convention that names any DE
strategy by means of a string of the form DE/x/y/z. In such
a representation, x is a string specifying the individual that
must be modified (best = the best one in the population, rand
= an individual chosen at random, rand–to–best = a randomly

chosen one, but the best one takes part in the modification as
well), y is the number of difference vectors to be used in the
modification of x (either 1 or 2), and z denotes the method
for crossover (exp = exponential, bin = binomial).

As an example of a modification scheme, here the descrip-
tion of the DE/rand–to–best/1/bin strategy is given. According
to this scheme, when creating the new i–th trial, the i–th
individual in the current population is taken into account,
and the random generation of two integer numbers r1 and r2
in [1, . . . , l] (differing each other and different from i) takes
place. Moreover, the random generation of another integer
number s in [1, n] is performed. Now, the trial individual x′i
can be created, for which the generic j–th component is

x′i,j = xi,j + F · (bestj − xi,j) + F · (xr1,j − xr2,j) (1)

on condition that either a real number ρ in [0.0, 1.0], generated
at random, is lower than the value of the crossover rate (CR)
DE parameter, in [0.0, 1.0] range as well, or the position j we
are considering is equal to s. If neither is true, a copy is carried
out: x′i,j = xi,j . F is the factor, another DE parameter, and
is a real-valued constant used to control the largeness of the
differential variation (xr1,j − xr2,j), whereas bestj represents
the j–th component of the best individual in the population.

The trial individual x′i obtained in this way is compared
against xi in the current population in terms of fitness values,
and the better enters the new population (at parity, the trial
is chosen as well). This scheme is reiterated for a number of
generations Gen, which is another DE parameter.

III. DIFFERENTIAL EVOLUTION APPLIED TO
CLASSIFICATION

The aim is to address a supervised classification problem by
a DE tool that can extract in an automatic way from a database
a set of easy–to–understand classification rules for each class.
If we consider the number of database attributes and their
ranges, it is evident that, whenever classification problems are
complex, the amount of possible descriptions becomes huge.
This makes an exhaustive search based on the enumeration of
all the possible descriptions computationally unviable. Hence
we appeal to an evolutionary system. It does not guarantee
to find the global optimum, yet it often allows achieving a
suboptimal solution in a reasonably low amount of time. In
particular, the basic component of our approach is constituted
by a DE model in which the population is constituted by l
potential solutions, each representing a set of classification
rules. During the evolution, each rule set competes with the
other rule sets, and the best one is gradually improved by
finding new, fitter ones. This search goes on until rule sets of
good quality are found or other stopping criteria are satisfied.
At the end of the evolution a best rule set emerges. Hence, in
our approach more than one rule is discovered for each class.

With the definition of a fitness function, the classification
problem becomes the problem of searching the best among
all the possible descriptions, i.e. an optimization of the fitness
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function. For this latter problem several optimization tech-
niques can be employed. The major steps of our DEC–based
rule set search can be formalized as follows:

1) for each database class find the best rule set as follows:
a) randomly create an initial population of rule sets
b) evaluate each rule set by means of a fitness func-

tion;
c) for each individual in the current population:
• apply to it the chosen DE strategy to produce a

new rule set;
• insert this new rule set in the new population if

its fitness is better than that of the starting one;
d) repeat steps b) and c) until either a sufficient-

quality rule set is obtained or the maximum number
of generations is reached;

2) assign each example to one and only one class by
resolving possible indeterminate cases.

Step (2) is very important because in all of the previous
steps one class at a time is dealt with. Consequently, for
a database containing Cl classes, it might occur that some
instances cannot be allocated to one and only one class:
such instances are termed indeterminate. This can happen
either because an item is taken by more rules predicting for
different classes (“yes” indeterminate item) or because no rule
takes it (“no” indeterminate item). Hence a post–processing
phase should be performed to assign each indeterminate case
to one and only one class. The assignment phase for these
indeterminate cases is described in detail in [14]. If, instead, a
sample is taken by one or more rules predicting for one class,
then the sample is assigned to that class.

A. Encoding

The supervised classification problem can be defined as
follows. Suppose to have a database D constituted by N
instances Xi with the corresponding class label Ci, i.e.,
D = {(X1, C1), (X2, C2), . . . , (XN , CN )}. Each of these
instances is a vector of n components that we call ‘attributes’.

We apply DEC as the optimization algorithm to find for each
class the optimal attribute ranges allowing us to predict the
class. We face this as a supervised classification problem, so
during a training phase the classifier builds a decision function
as a set of rules starting from a part of the database. Then,
in the testing set this decision function is used to predict the
class of the previously unseen database instances.

Each individual is a real-valued vector representing a set
of NR rules connected in OR reported in sequence in the
representation of the individual, called chromosome. Each
rule is composed by a number of n conditional clauses, in
which conditions over the attribute values are set, and by a
predictive clause representing the class. A class together with
its condition forms a classification rule Ri under the form
‘IF< conditions > THEN < class >’.

The idea underlying our encoding is that the conditional
part of the representation of any given rule rule should consist
in a number of clauses equal to the number of the instance

Rule 1 Rule 2 …
Rule 1 …

Clause 1 Class… Clause n

Constant 1ij

Activation
flagj

Rule NR…

…

Rule i

Clause j

Constant 2ij

Fig. 1. The rule set structure.

1.1 34 45 6.4 7.3

1 1 0 1

0 01 1

9.4 9.9 0.2 4.3210.7 3.227

5.1 7.8 0.8

Rule 1 Rule 2

Fig. 2. An example of rule coding with the related range and active vectors.

attributes, i.e. n. These clauses should be joined by means
of logical AND connectors. Each clause should code for a
zero–th order clause, i.e., one in which only one attribute is
contained. To each attribute a range within the attribute domain
should be associated.

To implement our view, we need two vectors.
Firstly, a range vector of size 2 ·n ·NR is used that contains

the minimal and maximal values for the range of each variable
in each rule in the considered rule set.

Secondly, an active vector of size n ·NR specifies whether
or not each clause of each rule in the data set is active, i.e.
whether or not it should be explicited in the construction of
the rule set. Each position of such a vector can take on two
values {0,1} indicating the absence and the presence of the
related clause in the explicit form of the rule, respectively.

The structure of the rule set contained in a generic DEC
individual is shown in Fig. 1. Going from top to bottom,
it shows that a DEC individual contains NR rules, each of
which contains n clauses, each represented by two real values
Constant1j and Constant2j , and an Activation flagj stating
if that clause contributes to the rule under construction.

Let’s make an example. Supposing there are two rules and
four attributes denoted with A1, · · · , A4, if the range and active
vectors are as in Fig. 2, then the classification rule set extracted
for a class C is decoded as follows:
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IF ((A1 ∈ [5.1, 7.8]) AND (A2 ∈ [0.8, 1.1]) AND (A4 ∈ [6.4, 7.3]))

OR ((A1 ∈ [9.4, 9.9]) AND (A4 ∈ [3.2, 4.3])) THEN C

The execution of DEC provides a rule set for each class
that contains a combination of AND and OR connectors used
to construct the classification rule for that class.

B. Fitness function

The fitness Φ(i) of the generic i-th individual in the pop-
ulation is computed as the percentage of correctly classified
cases over the training set:

Φ(i) =
Nc

Ntr
· 100.0 (2)

where Nc is the number of cases in the training set that are
correctly classified by the rule represented by the individual
i, and Ntr is the total number of cases in the training set.

Given this definition, Φ(i) can vary in the range [0.0−100.0]
and the classification becomes a maximization problem.

To evaluate the effectiveness of the classifier over items
never seen in this training phase, and to analyze the general-
ization ability of the rule set obtained, a testing set is taken into
account, and several performance measures can be computed.

The first performance indicator is the Accuracy defined as
the number of correctly classified samples with respect to the
total number of samples in the testing set. It is evaluated by
means of the equation (2) computed on the testing set. We
will denote it as A in the following.

The accuracy in the classification greatly depends both on
the method employed and on the characteristics of the specific
database to be faced. It is well known that accuracy on its own
may not be a sufficient measure for evaluating a model when
an imbalanced distribution of the classes takes place, as it is
the case for the problem we are facing in this paper.

Two more important indicators are defined in the medical
domain, namely the sensitivity Se and the specificity Sp, that
can be used as alternative/supplementary measures to accuracy
[25]. These further measures represent an estimation of the
posterior probability of obtaining a positive/negative decision
in the presence of a positive/negative case, respectively, where
the term ‘positive’ represents an unhealthy case. They quantify
the ability to classify correctly examples as belonging to the
positive and the negative class respectively.

A further, often used, classification quality indicator is the
“area under ROC curve”. It too ranges within 0.0 and 100.0,
the higher the better. For details about it please see [25]. We
will denote it as AURC.

IV. RESULTS AND DISCUSSION

To carry out experiments a database, suitably anonymized,
collected at the Department of Bio-Morphological and Func-
tional Sciences of the University of Naples Federico II has
been considered. To create this database, starting from a set
of Magnetic Resonance brain images of 120 patients with
clinically definite MS, they firstly applied a multiparametric
segmentation procedure to the whole image set, so as to
identify both normal brain tissues and clusters of potentially

TABLE I
THE MULTIPLE SCLEROSIS LESIONS DATABASE.

variable unit range description
surrounding white matter 0.32 - 1.00 Amount of White Matter enclosing a

lesion
compactness 0.31 - 1.98 Degree of compactness of a lesion

tissue contrast 0.56 - 1.00 Minimum color contrast to detect a
WML in the multiparametric space

volume 3 - 10,522 Lesion volume (number of voxels)
sphericity 0.01 - 1.23 Degree of sphericity of a lesion

abnormal white matter voxels. Then they labeled these latter
as White Matter Potential Lesions (WMPLs).

Table I describes the five features contained in the re-
sulting database, the sixth being the class (no MS lesion
/ MS lesion). This database, prepared by medical experts,
contains 2844 items, 1905 representing actual MS-related
lesions (class 2) and 939 showing no actual MS-related lesions
(class 1). All the database features contain real–valued data,
apart from the volume that is expressed as an integer value,
and the class, which is integer as well.

In our experiments we regard this database as the gold
standard, we start from it and make use of DEC to extract
explicit knowledge.

As concerns DEC, it has been written in C language, and
has been run on a personal computer equipped with a 2.93
Ghz processor and 4GB 1067 MHz memory. A DE/rand–
to–best/1/bin mutation strategy has been chosen in the DEC
version used in these experiments, and the values for the pa-
rameters have been set as follows: population size NPop = 30,
number of generations Gen = 500, crossover ratio CR = 0.5,
scale factor F = 0.5. No preliminary tuning phase has been
specifically effected over this sclerosis problem for the choice
of these values, rather the same values as in [14] have been
used. Moreover, we have decided to search for rule sets having
three rules for MS lesions and three rules for non-MS lesions.

A DEC run performs a 10–fold cross-validation, so, for the
generic i-th fold, testing uses the i-th 10% of the data, in their
sequential order in the database, while training occurs on the
remaining 90%. The classification result for this generic i-th
fold is the accuracy over the related testing set %Ai

Te. The
result for the whole run, instead, is the average, over the 10
folds, of the 10 %Ai

Te values achieved, i.e. AvC = 〈%Ai
Te〉.

Actually, DE is a stochastic technique, whose results depend
on an initial integer value assigned to a seed for a random
number generator. To get rid of this, a total number of 25
runs, each of them being a 10–fold cross-validation, has been
effected, and results have been averaged over the 25 runs.

For each of the four parameters accuracy, sensitivity, speci-
ficity, and area under the ROC curve, Table II reports the
average values av achieved over the 25 10–fold runs, the
related standard deviation st dev, the highest (max) and the
lowest (min) values. All this information is provided for the
training set, the testing set, and the whole database.

A. The advantage of DEC: the IF-THEN rules

The clear advantage of DEC as a DSS consists in the fact
that it provides users with explicit knowledge that is automat-
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TABLE II
RESULTS IN TERMS OF ACCURACY, SENSITIVITY, SPECIFICITY, AND ROC CURVE AREA.

A Se Sp AURC
Database av std dev max min av std dev max min av std dev max min av std dev max min

Training set 75.53 2.27 84.14 72.81 74.37 2.93 86.20 71.10 87.37 7.70 98.92 70.53 85.60 6.42 95.25 71.61
Testing set 74.51 4.84 85.92 66.90 73.97 5.45 93.64 66.67 82.87 11.56 100.00 56.52 81.51 9.84 96.69 58.45

All database 75.43 2.21 83.51 72.96 74.32 2.89 86.87 71.99 86.90 7.87 98.54 70.28 85.18 6.57 94.84 71.39

ically obtained from the database and presented as IF-THEN
rules. In fact, these rules can be profitably used for diagnosis
purposes. Moreover, DEC also executes feature extraction,
because the obtained rules may contain just some among
the attributes in the database, which could be a very useful
support when performing diagnoses. This is the case reported
in [14]. Thanks to both these characteristics, physicians may
be helped with useful information. Obviously, their opinion on
the correctness of the extracted rules, and on their helpfulness
as well, is of fundamental importance for medical practice.
In the following the best set of rules found for the Multiple
Sclerosis problem is reported. Namely, they are those with the
highest accuracy value on the testing set obtained on a fold
among all the 25 runs. This set of rules has been obtained in
the 12-th run for fold 3.

IF (0.40 ≤ compactness ≤ 0.91) AND (0.07 ≤ sphericity ≤ 0.82)
THEN MS lesion

IF (0.63 ≤ compactness ≤ 1.93) THEN MS lesion

IF (0.36 ≤ surrounding white matter ≤ 0.73) AND
(4241 ≤ volume ≤ 6945) THEN MS lesion

IF (0.38 ≤ surrounding white matter ≤ 0.73) AND
(0.31 ≤ compactness ≤ 0.69) THEN no MS lesion

IF (0.31 ≤ compactness ≤ 0.41) THEN no MS lesion

IF (0.33 ≤ compactness ≤ 0.55) AND
(0.64 ≤ tissue contrast ≤ 0.91) THEN no MS lesion

Thus, even if the OR connector is not explicitly present in
the single DEC rules, the whole rule set implicitly executes an
OR over each class through the use of a user-defined number
of rules to achieve satisfactory classification performance.

The values of accuracy, sensitivity, specificity, and area
under ROC curve for this set of rules are reported in Tab.III
over the training set, the testing set, and the total database.

TABLE III
THE CLASSIFICATION ACCURACY OF THE BEST SET OF RULES.

A Se Sp AURC
Training set 81.21% 82.06% 78.69% 79.00%
Testing set 85.92% 88.18% 80.25% 80.72%

All database 81.68% 82.64% 78.87% 79.19%

An interesting issue about these numerical results is that this
rule set is effective in classification over the whole data set in
terms of correct classification rate, and shows high values for
sensitivity. This is of extreme importance in medicine, where
the error of assigning sick people as healthy should be highly
avoided, since this error would lead to not providing the patient
with the necessary care. The other error, instead, i.e. assigning
healthy people to the sick class, is related to specificity values,
and, although may have dangerous psychologic consequences,

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

2

compactness values

cla
ss

    
    

    
 

compactness values vs class

Fig. 3. Compactness values in items belonging to the two classes.

does not have lethal consequences. Our rule set effectively
deals with this scenario as well.

As it is evident from this rule set, DEC is able to suggest
to doctors that compactness is a very discriminating parameter
for detecting actual MS lesions, because it is present in five out
of the six rules, i.e. two rules for lesions and all the three rules
for non lesions. Basically, these rules say that if compactness
is low, the lesion is not related to MS: the three intervals for
compactness in the three non-MS rules are: [0.31 - 0.69], [0.31
- 0.41], and [0.33 - 0.55]. On the contrary, if compactness
value is high, then the lesion is related to MS: in this case the
two intervals for compactness in the two MS rules containing
this parameter are, in fact, [0.40 - 0.91] and [0.63 - 1.93].

Aiming at further investigating this issue, in Fig. 3 we report
the distribution of the values for the compactness parameter
in items belonging to the two classes.

This figure shows that, actually, lesions not related to MR,
i.e. those in class 1, have low compactness values (average:
0.54, min: 0.31, max: 1.06), typically from 0.33 up to about
0.70, apart from a few outliers with higher values. MR-related
lesions (class 2), instead, exhibit higher values (average: 0.71,
min: 0.40, max: 1.98), very often up to 1.25, many outliers
showing values up to the maximum value, i.e. 1.98, and just
few down to 0.40. On the other hand, the two classes strongly
overlap in an intermediate range, say from 0.45 up to 0.75.

To effectively discriminate within this intermediate range,
the other parameters come to our help. Each of them is
contained in just one or two rules, but they are of high
importance to support compactness parameter in correctly
assigning items to the two classes.
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It is interesting to contrast the knowledge that has been
extracted by DEC against that provided by medical experts.

In fact, the medical knowledge needed to classify WMPLs
has been defined in cooperation with a team of physicians,
starting from the sclerosis features contained in the database,
and can be stated, in natural language, as follows: The tissue
composing a WMPL is abnormal if the lesion is somewhat
surrounded by WM, characterized by a strong compactness
and greatly contrasted in the multiparametric space. The
sphericity is moderate or high in small lesions, whereas, as
their volume increases, the sphericity starts decreasing pro-
gressively. Finally, as volume increases and sphericity starts
lessening, a lesion can be surrounded by gradually decreasing
WM and its compactness still remains high.

As it can be seen, high values for compactness are con-
sidered by doctors as a serious hint for the presence of an
MS-related lesion. Yet, in their description, it seems as if
this knowledge is hidden within many other considerations
about all the other parameters, as if they all were equally
important for discrimination. Even worse, these considerations
are expressed in a kind of a fuzzy language, through the
use of terms and expressions as: somewhat, moderate, starts
decreasing progressively, starts lessening, can be, gradually
decreasing, and so on. DEC, instead, proposes a clear way for
assessing whether or not a lesion is related to MS.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an approach relying on Differential Evolution
for the automatic classification of potential lesions in a real-
world Multiple Sclerosis database has been proposed to imple-
ment a valuable decision support system that could be useful
to doctors. Namely, the DEC tool has been utilized to extract
in an automatic way explicit knowledge from the database as
a set of IF-THEN rules, each composed by AND–connected
literals on the database attributes, and to show them to the
users.

The experiments have confirmed the viability of the ap-
proach presented, and the numerical results have evidenced
its effectiveness in terms of satisfactory percentage of correct
classification rate over previously unseen patients.

The most effective set of rules in terms of highest classifi-
cation accuracy has been shown and discussed.

The advantage of DEC has resulted in its ability to supply
users with both explicit knowledge and a selection among the
database attributes, unlike many other black-box classification
algorithms. In fact, a simple look at the extracted rules
evidences that one of the database parameters is of main
importance.

Since DEC is based on the basic version of DE, to improve
its performance future work will involve the investigation of
several enhanced DE versions appeared in the last years with
the aim at softening the main problem DE suffers from, i.e.
that of a limited amount of search moves.
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