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Abstract—This paper addresses lossy distributed source coding to as Slepian-Wolf coding [8]. Furthermore, as many sensor
for acquiring correlated sparse sources via compressed sensingsignals are analog/continuous-valued, quantization [9]-[14] is

(CS) in wireless sensor networks. Noisy CS measurements aréj,qyitaple in practice, and, thus, the compression becomes
separately encoded at a finite rate by each sensor, followedIOSSy [15]

by joint reconstruction of the sources at the decoder. We | ) ) . .
develop a novel complexity-constrained distributed variable- ~ An information theoretic foundation for lossy source coding

rate quantized CS method which minimizes a weighted sum is the rate-distortion theory [16, Ch. 2] [17, Ch. 10], i.e.,
between the mean square error signal reconstruction distortion, source coding with a fidelity criterion [18, Ch. 9]. Whereas
and the average encoding rate. The encoding complexity of ha theory is primarily applicable to performance analysis
each sensor is restrained by pre-quantizing the encoder input, . N .

i.e.,, the CS measurements, via vector quantization. Following and k_Jenchmarkmg., vector quantization (VQ)_ [13], [14] is a
the entropy-constrained design, each encoder is modeled as apractical compression method capable to achieve performance
quantizer followed by a lossless entropy encoder, and variable- arbitrary close to the theoretical optimum [3], [4], [19]. The
rate coding is incorporated via rate measures of an entropy jnevitable loss from a finite VQ dimension can be compensated
bound. For a two-sensor system, necessary optimality conditions for by variable-length coding [20], [21] [17, Ch. 5] that assigns

are derived, practical training algorithms are proposed, and hort d ds t f i bols t inimize th
complexity analysis is provided. Numerical results show that the shorter codewords to more irequent symbols to minimize the

proposed method achieves superior compression performance as@verage transmission rate. This can be realized by entropy-
compared to baseline methods, and lends itself to versatile setupsconstrained VQ (ECVQ) [22] that models the encoder as a

with different performance requirements. VQ followed by a lossless entropy encoder for the symbols.
Index Terms—Distributed lossy source coding, joint sparsity, In practice, VQS/ECVQs can be optimized by the Linde-
entropy-constrained vector quantization, variable-length coding, Buzo-Gray algorithm [23], descending from the iterative Lloyd
rate measure. algorithm [24], [25].
In WSNSs, standard source compression is altered by two
|. INTRODUCTION peculiarities. The first is a DSC setting where multiple sensors

T HE proliferation of wireless sensor networks (WSstelprt:lrgtely measttjre, e.”‘f("fd e,_ap? qomrlrlunlcatEf[ ml:.lt'pleD(égr'
especially due to the advent of the internet of things [1 elated) sources to a sink for joint signal reconstruction.

engenders the need of energy-efficient communication te |_g(;r_1ates from the p|02_e(;r|_ng workdbﬁ SIeC|50|an a_”d Wolf [8] .
niques for resource-limited sensors in, e.g., environment {3 |sDc_ret%so%rces, whic (;S e_xterf1 ed to Gaussian sourlcesdln
industrial, healthcare, and military applications. In a typicaf°)- Distributed quantizer design for compressing correlate

monitoring task, geographically distributed sensors meas e ces appears in, €.g., [271-[29], which incorporate entropy
a correlated information source, encode the measureme.?ﬂg"_]g V|a.rate measures of entrqpy bounds.. The second mod-
separately into finite-rate bit sequences, and communiciigation arises from remote sensing: encoding at each sensor
the messages to the sink for joint decoding of the sourc§/IeS Only on indirect observations of a source due to, e.g.,

Since wireless access consumes lots of battery energy Ejetdlcitﬁd measur.(tar?ent dewtce, or nmse—ggrrup.tetd Zenszr
source compression [3]-[5] is prevalently used to minimi gputs. This necessitales remote source coding, Introduce

the number of transmissions to prolong the network lifetim&} the sfemmal work.by Dobrushin and 'I'_sybg(l;ov [33]'. Vgl
In particular, the decentralized network structure calls f sign for compressing a remote source is addressed in [31].

distributed source coding (DSC) [5]-[7], commonly referregombming these two fac_tors gives_ ri;e to distributed_joint
estimation and compression [32]. Distributed compression of
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environmental monitoring [49]—[51], source localization [52], Related works: To the best of our knowledge, this is the
and cognitive radio applications like spectrum sensing afidst work on distortion-rate optimization in a (distributed)
direction of arrival estimation [53]. In particular, distributedQCS setup. The CS model bases on the distributed CS in
CS [49], [54] establishes a unified decentralized comprgg9], [54]. The quantizer design is mostly related to [66],
sion framework where intra- and inter-signal dependencigg’] which, differently from our work, 1) focus on channel-
of multi-dimensional compressible signals are exploited vigptimized VQs, 2) use fixed-rate VQs, and 3) involve complex
joint sparsity models. CS benefits from simple and universahcoders impeding the practical implementation. The entropy
encoding by shifting most of the computational load to theoding part utilizes the original ideas of [22], and those
decoder [46]. extended to multiple remote sources in, e.g., [39]. Apart from

Whereas the early era of CS operated exclusively on analmgy initial works [71], [72], pre-quantization as a means to
signals, the practical necessity of converting the measuremanisderate encoding complexity, and the use of variable-rate
into finite-rate bit sequences initiated quantized CS (QCS8dding in a QCS setup have not been addressed before. A
[55]-[58]. Consequently, numerous QCS algorithms that aphilosophy similar to our pre-quantization appears in multiple
commodate the non-linear impact of CS and quantization jmototype based approaches in, e.g., [75], [76]. Whereas [71]
the encoder/decoder to ameliorate the signal recovery perflreuses on joint source-channel coding in a single-sensor
mance have been developed. The works in [56], [59], [60] deetup, this paper takes a pure DSC approach similar to [72],
vised optimized scalar quantizers (SQs) for a fixed CS decodmnd extends it by providing 1) more detailed derivations
whereas quantization aware CS decoding algorithms for a fixadd model illustrations, 2) practical training algorithms, 3)
SQ encoder developed in [57], [58], [61]-[63]. These methodspmplexity analysis, and 4) more insightful and extensive
however, are sub-optimal because they 1) optimize only eithmrmerical experiments.
the encoder or decoder, 2) use SQ instead of VQ, and/or 3)0rganization: The system model is defined in Section II.
minimize the measurement quantization distortion, which, dire Section 111, the novel distributed QCS method is developed,
to non-linearity of the CS and quantization, does not in genegafactical training algorithms are proposed, and algorithms’
minimize the signal reconstruction distortion [64, Sect. 3.2.8pmplexities are analysed. Numerical results are presented in
[61]. To this end, the first joint designs of VQ based encodebection 1V. Section V summarizes the paper, and discusses
decoder pair(s) to minimize the signal reconstruction error foture work.
QCS setups are [64]-[67]. Shirazini al. derive necessary Notations: Italic capital letters denote random variables
optimality conditions for acquiring sparse sources over noi§yX); boldface non-italic capital letters denote random vectors
channels in a single-sensor case in [65], and in a two-seng¥); boldface non-italic small letters denote realizations of
DSC setup in [66], [67]. However, the enhanced compressitandom vectorsx); boldface italic small and capital letters
entails high encoding complexity: a sensor must reconstrgtgnote deterministic vectora)(and matricesA), respectively;
a minimum mean square error (MMSE) estimate — a task odlligraphy letters denote sets/alphabef®). (The identity
exponential complexity [68]-[70]. As a countermeasure, QQ8atrix of size N x N is denoted ad y, and a matrix with
methods that moderate encoding complexity via pre-quantiziaj entries zeros aé. ()" denotes the matrix transpose, and
the encoder inputs were developed in a single-sensor caséShdenotes the cardinality of sét |-||, and||-||, denote the
[71], and in a DSC setup, albeit for ideal channels, in [72]y-norm and¢,-norm, respectively.
Besides algorithm development, information theoretic limits
of QCS have been recently studied in, e.g., [73], [74]. Il. SYSTEM MODEL

Contributions: We consider DSC for finite-rate CS ac- Consider a distributed QCS system consisting of't@s
quisition of correlated sparse sources in WSNs. We deased sensors and one sink, as depicted in Fig. 1. By the
velop a novel distributed variable-rate QCS method undBSC philosophy, each sensor acquires noisy CS measurements
complexity-constrained encoding which minimizes a weighteaf its source, converts them into finite-rate bit sequences via
sum between the mean square error (MSE) signal reconstregparate encodingi.e., without inter-sensor collaboration),
tion distortion and the average encoding rate. The encodiagd communicates the messages to the sinjofot decoding
complexity of each sensor is restrained via pre-quantiziiog both sources. As the main focus is on source coding, the
the encoder input, i.e., the CS measurements, with a Vigansmissions from each sensor to the sink are assumed to be
Following the ECVQ approach, each encoder is modeled asrmior-free.
guantizer followed by a lossless entropy encoder, and variable-
rate coding is incorporated via the rate measures of an entrdpyCS Signal Acquisition

bound. We confine to separate coding of sensors’ messag&he correlated sourceX; and X, are given by a joint
indices. Moreover, the code rates are merely approximatgshrsity model termed JSM-2 in [49], [54] as

via rate measures, i.e., finding the optimal codebooks are _

outside the scope of this paper. We derive necessary optimality Xi=0+0, =12, 1)
conditions in a two-sensor case, propose practical tI’aimngThe presented alternating optimization framework, where one optimizes
algorithms, and provide complexity analysis. The proposede system block while keeping the others fixed, can be readily extended

method is numerically demonstrated to efficiently utilize sign&f @ general multi-sensor system, although the computational and memory
uirements rapidly grow intolerably high. Nevertheless, the main features

. . . . . re
correlation, _aCh'_eve high d'Stort'on'rate_pe_rformance’ and SHf'%he considered scheme are more lucidly highlighted in the two-sensor setup
to setups with different performance criteria. while avoiding cumbersome derivations.
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Sensor 1 B. Measurement Space Pre-Quantization
Noisy CS Pre- ti: Encod Decod . . .
—_— Y M 'Ze'vl e 1199 — Prior to the actual source encoding, the input of the en-
Xl]RN b, ‘mRMIF PQ1 %1 E1 % > KN"Xl coding system at each sendor 1,2, i.e., the measurement

K-spare : w, | D | Sem random vectoY; of (2), is discretized with a VQ. Each pre-

sowees = = = = == - hy quantize? PQ, is a focal block in restraining the encoding
Y. v i & ; . L . .

X, ‘.L &, | >P-22» PQ2 2 E2 2 R"N’Xz complexity of a sensor while providing high compression

>

RV § 2 R Ro performance. As a by-product, it simplifies the optimization
W, design by converting optimization over continuous random
Sensor 2 variables into that over discrete ones, and facilitates offline
Fig. 1. Distributed variable-rate QCS acquisition of catetl sparse sources t.r"?“”'”g by aIIowmg prg-cpmputatlon of requwed.lnpu.t qu.an_
under complexity-constrained encoding. tities. A general description of each pre-quantizer is given
next whereas their specific optimization is deferred until
Section 111-B.
_ 2 indi i
where the common compone€t and innovation component L€t Ve = {1,...,[V|} be a set otell indicesv, € V; with

@, are real-valued length? random vectors which both arePré-guantization raAteRl = log,[Vi| bits/vectorY; for sen-
K -sparse, and share the same random (unknown) support, P87/ = 1, 2. LetG1 = {g; 1, ..., |} be apre-quantization
the set of indices of non-zero components. Consequently, e&@d€bookconsisting of codepointsg, ,, € R*'. Each pre-
real-valued lengthV source random vectdX; is K-sparse as duantizerPQ; is a [Vj|-level VQ that partitions ther;-
Ixill, < K <N, I =1,2. The vectors®, ©,, and ®, are dimensional measurement vector space determined by (2) into
assumed to be independent of each other. JSM-2 sfgagds CelSSi1, ..., Sy 1€, Siw NSy =0, v # vy €V, and
encountered in, e.g., a group of sensors monitoring an audjlég‘fil S0, = RM:. Thus,PQ, is a lossy mapping
source or spectrum occupancy [49]. oM, B

Let 7; C {1,...,N} be an index set representing thth PQu:R™ =W, 1=1,2, (3)
sparsity pattern with7;| = K,s = 1,..., (¥). The(}) index i.e., for a given measurement realization, it assigns a cell index
sets are different, i.e.J;\To #0, Vs' #£s=1,..., (%) asPQ,(yi) =v eV, if y; € Siqy,-
Each support/; is a(s]gticiated with the priori probability Remark1. The codepointsy, ,...,g,,, are intermediate

: K _ guantities for the actual encoding Bt, i.e., they are solely

p(Ts) € [0, 1] with 3,5 p(Ts) = L. used to determine in which celf;,, each realizationy;
belongs to,l = 1,2. This classification is made explicit by
the encoding rule defined in Section 1lI-B. In summary, the
Y, =X, +W,;, 1 =1,2, (2) quantized version of random vectd; is never reconstructed

. in the system.
whereY; is the lengthd/; measurement random vector, and

W, ~ N(0, 0%, ,) is the measurement noise random vectog, Encoding and Decoding
WhereasK < M; < N is assumed for a conventional CS

setup, the design is not restricted to any particular range f%rr
M;. 1t is worth emphasizing that as (2) models the physi
of the sensing process, the encoder at each CS-based s

Each sensor measures the souksethrough a fixed (and
known) CS measurement matrii; € RM >N as

The outputs of eachPQ;, i.e., the cell indicesy; € V),
e fed to encodeE; at each sensof = 1,2. Following a
(fijstomary approactt; is modelled as the concatenation of
egiﬂfssy) guantizer, and a lossless entropy encoder [27], [28].
[=1,2 has no access X, bu_t only oY, Conseque.ntly, cordingly, each sensor encodes the cell indices into message
the compression scheme falls into remote source coding [3| ices, and further, into binary source codewords. The sink
The structure of eackb;, I = 1,2, has a significant impact yses the received pairs of codewords to jointly reconstruct
on the CS signal recovery performance. In this respect, Bgtimates ofX; and X,. Distributed quantizer blocks are
restricted isometry properhand the coherence @;, which  gescribed next: the treatment of entropy coding is elaborated
establish guarantees on stable and accurate CS signal reg9®seaction 11-D.
struction (in a non-quantized case), are often used to assesf) Separate Encoderstet Z; 2 {1,...,|Z;|} be a set of
the quality of each®; in CS [48], [81] [80, Ch. 6] [82, message indices € Z;, |Z;| < |V|, for sensorl = 1,2. Let
Sect. 1.4.2 — 1.4.3] [83, Sect. 1.3.3]. Nonetheless, we negd 2 {hi1,...,hi s}, [Ha] = 7], be asource codebook
no such assumptions d#; and ®. consisting of binarcodewords Each encoder is a composite
mappingE; : a; o m; as
2Common sparse signals have been also studied under compressive support E V=T —H, l=1,2. (4)

recovery and signal reconstruction problems with multiple measurement

vectors in a variety of monitoring applications [77]-[79]. The fi ; . .
e first mappingm; : V; — Z;, termed themessage in-
SWhereas M; < N complies with the fundamental CS theory, over- ppingm; : Vi ! g

sampling (i.e., M, > N) may be useful in QCS setups. Namely, given £#1€X mapping maps each cell index; € V, into a mes-
quantization bit resolution of an A/D converter, over-sampling is a practicslage indexi; € Z;, i.e., m = {m(1),...,m([Vi|)}, where
— and often cost-effective — way to improve the reconstruction accuracy [58].

4For instance®; with i.i.d. Gaussian entries satisfies the restricted isometry SPre-quantization has also a pragmatic aspect: prior to source encoding, the
property with overwhelming probability iV/; > C; Klog(N/K), whereC;  sensor inputs are necessarily discretized with an A/D converter in any digital
is a positive constant [80, Ch. 1]. sensor device.
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Vl and X, given the underlying distributed CS setup.
m)=2| 1 )
D. Entropy Coding
m2=1| 2 I The pairs (a1, a; ") and (az, a5 ') can realize different
m3)=4| 3 1 | w1)={2.6} entropy coding classes in the system. In practi_ce, _the choi_ce
’ for used source code may depend on, e.g., application require-
m@)=2| 4 2 | 7'(2)={1,4,8} ments like reconstruction fidelity and maximum allowed delay
4 (i.e., coding block length), and implementation factors such
m(E)=4 | 5 3 |m'3)={0} as sensors’ computation and memory capabilities. A unified
_ - framework for subsuming entropy coding in the distributed
m(6)=1 T(4)= ) AN
(6 6 4 |m 9={3,57} guantizer design is introduced next.
m(7)=4 7 Encoder E; 1) Average Ratelet R; be the average encoding rate in
bits/vectorY; for sensor = 1, 2. Thus, the average sum rate
mEe)=-2| 8 of the sensors is

Pre-quantizer PQ R = Ry + Ro. (6)

In practice,R; is determined by the average codeword length
of the codebook;, i.e.,

Ri2EN()] =X pliy(i), 1=1.2, (7)

m(w) € ;. Given m;, eachi; € Z; is associated with a setwhere ~(i;) is the length of codewordh;; € H;, and

of cell indices mapped to itself, i.e., the inverse imagg(i;) £ Pr(I, = i;) is the probability of indexi; € Z;. An

m (i) = {vi € Vilm(v;) = i;}. Note that for|Z;| < [V,|, m alternative rate definition is presented in the following.

is a many-to-one mapping, i.e., it perfortessycompression  2) Rate Measure:Following the approaches in [22], [27],
of the cell indexV;. This accounts for the prefix "pre" for [28] [29, Sect. 4.2], instead of using (7), the average rate is
PQ,, as each sensor has a concatenation of two quantizesproximated via thentropy boundof a source code Let

the VQ of PQ;, and the message index mappingin E;. r(p(i;)) be arate measuravhich is a function of the message
Interconnections between the indices BR; and E; are index probabilitiesp(i;), i; € Z;, [ = 1,2. Accordingly, R in

Fig. 2. Interconnections between the indiceq; andE; for |V;| = 8 and
|Z;| = 4,1 =1,2. Note thatl; = 3 is assigned no cell indey; € V.

illustrated in Fig. 2. (6) is given as the expectation of the rate measures, i.e.,
Given an entropy code, the second mapping Z; — H; is A w2 1z ‘
a one-to-ondosslessnapping from the set of message indices R=500 2L p(a)r(p(i). (8)

to binary source codewordsy;, € #;, .., ai(it) =Ny, As a major benefit, the rate definition in (8) permits flexible
i € 1. leed-tO'Varlable-length COdlng is assumed, i.e., ea%atment of the entropy Coding without ty|ng the design to
indexz; € Z; is mapped to one codeword at a time, whereas tAgy particular source code.

binary representations ¢ ;, € #; have, in general, different  Entropy bounds and their associated rate measures

lengths. for various coding settings have been listed in, e.g.,
2) Joint Decoder: The joint decoder comprlses of two[27] [29, Sect. 4.2]. For the considered separate cod-
composite mapping® : {B1 o a; ', faoay '} as ing, 7sep(p(i1)) = —logyp(it), i1 € Iy, and, thus, the average

D:(Hy x Ha) = (To x To) > iy 1=1,2. (5) Sum rate is approximated &, = H(I1) + H(I2), where
H(L) = — Y1, p(in)logyp(ir) is the entropy of message
The first mappingse; ' : H; — Z;, 1= 1,2, decode the index;, I = 1,2.
entropy codes, i.e., the received codewbrd € H, is used
to recover the (transmitted) message index Z;. By this
procedure, we confine to separate coflingmessage indices
I, andI,. Owing to the information lossless property, the pairs This section describes a distortion-rate optimization frame-
(a1,07 ") and(ag, oy ') constitute uniquely decodable codesvork for the variable-rate communication system of Fig. 1.
As for the second mapping$; : (Z; x Z;) — C;, the de- A novel distributed QCS method for efficient acquisition of
coded message indices are used to jointly reconstruct estimafigs correlated sparse sourcKs and X, under complexity-
of sourcesX; and X, as x; := (1(41,%2) = C1,4,,4, and constrained encoding is developed. Practical training algo-
Xy 1= Ba(i1,42) = Ca, 4,, Whereg; ;, i, € R is thecodevec- rithms are proposed, and implementation and complexity
tor of a reconstruction codeboo® £ {C;11,...,C 7,1, z,}, aSPects are discussed.
|Ci| = |Z1||Z2], I = 1, 2. Thus, the decoddd performs a single
operation to 1) invert the quantization/encoding steps appligd problem Formulation
to Y; andY,, and 2) reconstruct the signal estimatesXof

I11. DISTRIBUTED VARIABLE-RATE QCS METHOD

Let X; be a lengthy random vector that represents the

6Separate coding enables low-complexity and low-delay coding as the peﬁétimate of sourc&;, [ = 1,2, at the output of decodeb.

(al,o{l), 1 = 1,2, can be chosen to constitute timstantaneoudossless
source codes. "The design of practical codes is beyond the scope of this paper.
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The average sum MSE reconstruction distortion is defined ies., the cells form a Voronoi partition [89, Ch. 5.1]. For given
cellsS;.,,, v; € V;, the optimal codepoints satisfy the centroid

9 N
D =Dy 4Dy =50, B[IX: - Xi3], () condition [23]
where the expectatioR|-] is taken over the distributions &; . 1
and W, | = 1,2. Furthermore, lett, (D, R) be a weighted Y9,v = E[Yi|Vi = v = p(0r) / s yif (y)dye, v €V,
distortion-rate cost function as Yoy (13)
£.(D,R) 2 (1—p)D+puR (10) where f(y;) is the probability density function oY;.

where 1, € [0,1] is a weighting parameter for adjusting the ) o

distortion-rate trade-off, ang is the average sum rate giverC- Altérnating Optimization of Encoders & Decoder

in (8). In this section, the encodeis; and E;, and decodeD
The objective is to minimiz&, (D, R) in (10) for a giverpy  are optimized to minimizeg,, (D, R) in (10) for fixed PQ,

by optimizing the pre-quantizePQ; (i.e., the pre-quantization and PQ, (designed as described in Section IlI-B and 1lI-D).

codebookgj;), the encoderg, (i.e., the message index map-The optimization involves six sets of optimization variables:

pings 7;), and the decodeb (i.e., the reconstruction code-the message index mappings and 73, the rate measures

books(;) such that the pre-quantization cefls,,, v; € V;, at  r(p(i1)) andr(p(iz)), and the codevectors ;, ;, andcz ;, 4.,

eachPQ,, [ = 1,2, satisfy a nearest-neighbor (NN) condition; € Z;, i2 € Z,. Due to the intractability of joint optimization,

[84]. As will be elaborated later, this structural constraint ithe alternating optimization principles (see Section IlI-B) are

focal in restraining sensors’ encoding complexity. Since trepplied, and the necessary optimality conditions for each

joint optimization of all these blocks is intractable, the desigvariable set while keeping the others fixed are derived. The

is split into two steps: first, eachQ,; is optimized under the implementation perspective is detailed in Section Il1-D.

NN constraints (Section 111-B), followed by the optimization of 1) Message Index Mappingsirstly, the minimization of

Ei1, Eo, andD for fixed pre-quantizers (Section 11I-C). Despite€,, (D, R) over the message index mappingis independent

the sub-optimality, the approach is empirically shown to yieldf r(p(i;)), i € Zis, 1 # I’. Hence, for fixed-(p(4;)), i € I,

satisfactory performance (Section V). C1, C2, and mp, the optimal message index mapping for
The rate termuR in (10) eliminates the need of con-sensorl # [’ is the one that minimizes, (D, R). Let us start

structing specific codebook#; and #- in the optimization by reformulating the distortion term® of £,(D, R) as

phase. As demonstrated in [22] (for a point-to-point case),

decent performance is achievable by subsuming rate measut@s= 371 >0 cyu Dovscvs / / p(v1,v2]y1,y2)

Tsep(P(i1)) = —logyp(41), 4 € Z;, in the optimization loop, Y1 /y2

followed by a source code whose average codeword length

is close to the index entropy [22]. These include Huffman

IE[H)(l - Cl,wl(vl),wz(vg)H%“/l = U1, Vv2 =V2,...

1 =y1, Y2 =y2| f(y1,y2)dy1dy2
(@) 2

codes [20] [17, Sect. 5.6], and arithmetic codes [85]. Note = > ;1> . cv D vy,

that ;, = 0 realizes a minimum distortion fixed-rate method Y1€81,0, JY¥2€52,0y

with R; = 1Og2|Il|, l=1,2. {E[HX1H3|Y1 =y1, Y2 = }’2] + ||Cl,771(111)77r2('02)||§7
2CZ771(’01)7W2('02)E[X1|Y1 =y, Y2 = yQ]}

B. Optimization of Pre-Quantizers f(y1,y2)dyidy:

(6) 2
At eachPQq, the cellsS; ., and codepointg, , , v € V, = 2im Zglevl szGVzp(Ulan) ,
of the |V,|-level VQ are optimized to minimize the MSE {]E[HX1H2|V1 = w1, Vo = va] + ||y (01) 72 (w2) 12—

distortion induced by discretizing the measurement vector acT o) (om }
,m1(v1),m2 (V2 ,V1,02

space (see (2)), i.e., the distortion (14)
pria sV p)E[Y g, [3IVi = ], I =1,2. (1) Where (a) follows from i) the Markov proper-
. . . . ties Vi—=Y =Yy =V, X; = (i, Vo) = (i,
This approach inherently results in the required NN encoding, —, vy, — 17, and X, =Yy — Vi, L £,

(cf. (12)). Since finding theglobally optimal partition and and i) the fact that p(vly)) =1, if y; € Sy,

codebook of a quantizer is intractable, an alternating optind 0  otherwise, (=1,2; (b) follows from

mization technique [23]-[25], [27], [65], [66], [86]—[88] isp(v1,v2) = cs [ cs, . f(y1,y2)dyidys, and the

adopted to derive the necessary optimality conditions. Suggfinition ofyalveléﬁ)rz? 2’“26 RY as

conditions serve as a practical means to train eB€h, e

[ = 1,2, via principles of the iterative Linde-Buzo-Gray (LBG) 24, v, SEXIVI =v, Vo =w], 1 =1,2
1

algorithm [23], elaborated in Section IlI-D. _ / /
For given codepointg, ,,, v € Vi, the optimal cells which p(v1,v2) Jy,es, ., Jyaeon,
minimize D} satisfy the NN condition [23] EXi|Y1 =y1, Y2 =y2|f(y1,y2)dy1dy2,

Sl :{YI lyr—g, 113 < Hylfglﬂ,{H%, Yo # vz}, v € Vi, which represents theentroid of the minimum mean square
(12) error (MMSE) estimates of sourcK,, [ = 1,2, given such
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measurement realizations andy, that are pre-quantized toAlgorithm 1 Training algorithm forPQ;, I = 1,2 (Offline).

the cell index paivy, v2), v1 € V1, v2 € Vo atPQ; andPQs. Inputs: @ CS matrix®;; b) measurement training vectors
{y", ¥, .. }; c) pre-quantization rate&,.
Initialization: Initial codebookG, = {g, ;,. ..,y }-

Remark2. A closed-form expression of the MMSE estimate Repeat

EX;[Y1 =y1,Y2=y2], L =1,2, in (15) has been derived 1) For giveng,, find the optimal cellsS/,,, v € Vi, by
for a similar signal setup in, e.g., [66, Proposition 1]. Never- ¢|assifying the vectors‘gyl(l),yl@), ...} according to (12).
theless, as it will turn out later, computation of these complex ) oy givens; ., v; € Vi, compute the optimal codepoints
estimates is 9b_wated by means of the_ pre-quantizers both wbl*’vl, v, €V, as the conditional expectations in (13).

the offline training and online communication phase. until convergence

Output: Pre-quantization codebo®k = {g; 1, ..., 9, v, }-

Finally, the rate ternR in £, (D, R) can be extended as

R = 212=1 ZizEIL p(i)r(p(ir)) e,
5 (16)
= Zl:l Zvlevl p(’Ul)’I“ p(ﬂ-l(vl)))' C?,i1,i2 =E [Xllll =11,15 = ig] , Vi1 €14, 19 €15
= 2viev; ovsev, P(V1, v2lin, d2)
E X1 =iy, Iy = i2, Vi = v, Vo = v2]
Combining (14) and (16), and dropping the (a) p(v1,v2)p(i1,ia|v1, va)
terms  E[||X;||3|Vi =v1,Va =wvs] not affecting the = Dievi Luaevs plir,iz)
minimization, finding the optimal message index mapping E[X;|Vh = vy, Vo = vg]
mf ={m(1),..., 7 (|Vi])} for each sensar= 1,2 separates () p(v1,v2)
into |V,| subproblems. Namely, the optimal message index for = Lvien; (i) Lvsermy i) (i1, iz)
av;ith cell of senson is given by the minimization problem E[X;|Vi = vy, Va = v2]
X _ . 2 (© Zvlewfl(il) 202€w;1(i2)p(v1’ U2)Z1,0, 02
™ (Ul) B walr(.glr;légl{(l /J) Zl:l szevz p(’Ul, ,UQ) Zvl GWfl(il) szewil(iz) p(vla v2) ’(20)
2 T
107 (01). a2 12 = ZClm(vl)mz(vz)zlv”l“)+ where(a) follows from the Markov propertieX; — V; — I,
pp(v1)r (p(m (vl)))}, Yoy € V1. andX; — Vir — Ir, 1 # I'; (b) follows from the Markov prop-

(17) ertyl; =V, — Vi — Iy, 1 # U/, and the fact thap(i;|v;) = 1,
Each optimal message inde% (vs), va € Vs, for sensor is  if m(v;) = 4;, and0 otherwise;(c) follows from (15).
similarly found by swapping the roles of the sensor indices.
D. Algorithm Implementation
Implementation aspects of the proposed method, termed

2) Rate MeasuresThe rate measure update follows thd>QCS-PQ, are elaborated next. Two offline training algo-
procedures in [22], [27]. Accordingly, for fixeg, the optimal rithms, and the algorithm for online communication phase are

rate measures for each senset 1,2 are given as proposed. Each algorithm’s complexity in terms of computa-
oo . . tional and memory requirements is also analyzed.
r*(p(ir)) = —logep(in), Vii € T, (18) 1) Offline Training Phase:The proposedbffline training
= 1085 > em 1 (i) P(0D)- algorithm for optimizing eactPQ,, | = 1,2, is described in

By (18), the average sum rate (8) becomeRlgorithm 1, and the algorithm for optimizing,, E2, andD is
R=H(I,)+ H(I), where H(I}) = — ZLlIl:‘1p(il)10g2p(il) presented in Algorithm 2. The foundation of both algorithms
is the entropy ofl;, | = 1,2. is the iterative Lloyd algorithm [23], [25]: in Algorithm 1,
eachPQ;, [ = 1,2, is optimized by successively applying the
necessary optimality conditions (12) and (13) (Steps 1) and
) . o 2)). Similarly, the optimization ok, E2, andD in Algorithm 2
3) Reconstruction Codebooksirstly, the minimization of rejies on the six-step iteration lo®pin which the optimality
£,(L; R) in (10) with respect to the codebodkis indepen- conditions (17), (18), and (20) (Steps 1) — 3)) are first applied
dent of R, andCy, I # 1. Accordingly, for fixedr, ands, the  yith respect to sensar, and then, with respect to sensar
optimal reconstruction codebodk = {c, ;,...,¢ 7, ;z,;} Once Algorithm 2 has converged, the resulting message index
for sourcel = 1,2 is found from solving|Z,||Z;| separate probabilitiesp(i;), i; € Z;, I = 1,2, are used to generate the
optimization problems for each index pdifi,iz), i1 € Z1, desired binary source codebooks and#..

iz €1y, as The requisite training data sets for Algorithms 1 and
G4y, = argmin E [|[X; — CLivin|2l T = ir, = i5] . (19) 2 (:il)re (%enerated as(JoIIo(\é\;s. Source and noise sqmples
Cliy.in RN x, ,x,,...}and{w, ', w,”, ...} are created by sampling

From (19), eacmzil_@ is given by the_ MMSE estimate of sgier optimization orders within the sequential algorithm could be con-
sourceX;, I = 1,2, given the message index péif,i2) [66], sidered as well.
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Algorithm 2 Training algorithm forE;, E;, andD (Offline).  Algorithm 3 Distributed variable-rate QCS method with
Inputs: a) CS matricesk;; b) pre-quantization rateR,; c) complexity-constrained encodin®QCS-PQ) (Online).
codebook sizes7,|; d) rate measures(p(i;)), i; € Z;; €) Inputs: &) CS matrices®;; b) PQ;: codebookg;; c) E;:
weight parametey € [0, 1]; fy MMSE estimate centroids mappingsm; and «;, and codebookH;; d) D: mappings

Zi vy 09, V1 € V1, 02 € Vo, [ =1,2. o~ ! and 3;, and codebook®{; andC;, I =1, 2.
Initializations: a) Initial codebooks  Separate encoding at sensof = 1, 2:

C={c11,.---.C 7z}, | =1,2; b) initial message (1) Acquisition of CS measuremenys according to (2).
index mappingr, = {m2(1),...,m(|V2])}. (2) PQ;: Assignment of pre-quantization index via (21)
Repeat usingg;.

for I =1,2 do (3) E;: @) Assignment of message indexiis= m; (v} );

1) For given Ci, Co, mp, U'#1, and r(p(i)), b) Assignment of binary codeword &g ;: = a,(i}).
iy €Z;, find the optimal message index mapping Joint decoding at the sink:

mr = {rr(1),...,7 (V])} via (17). (4) D: a) Decoding of binary codewords as
2) For givenr;, update the rate measure(i;)), i; € I, (i1,43) = (ay "(h1), 5 ' (h2,i5)); b) Joint reconstruction
according to (18). of source estimates a&; = (i, i5) = Cyi; 45 Using C;,

3) For givenr; andr,, compute the optimal codevectors [ = 1,2.

Cliiipr 11 € T1, iz € Iy, as the conditional expectations

in (20).
end for dex, sayi; € Z;, may become unpopulated (i.e; ' (i;) = 0)
until convergence in Step 1). Consequently, the rate measure in Step 2) becomes
Generate the binary source codebo@ksusing the index r*(p(i1)) = oo, and the codevectors, ; ... ' C1 i) 1Tl and
probabilitiesp(i;), i € Z;, [ = 1,2. Cyi10---:Coj, 7, IN Step 3) become undefined. It was
Outputs: Message index mappingsconjectured in HZZ] that, unlike for a fixed-rate quantizer, there
m = {m),....,m(ViD}; source codebooks is no rationale to re-include such unassigned indices in the
Hi={hi1,.. ., b reconstruction codebookssubsequent iterations.
G =A{Cu11,---,Cz,| z,/}; €ncoder mappings ai;  Complexity:The complexity of optimizing the cells of each
decoder mappings; ' andf, I = 1,2. PQ;, | = 1,2, via (12) scales as the number of levabs, and

the size of the training data set; the complexity of optimizing

the codepoints via (13) scales @g;|. The complexity of
from their respective distributions. Then, the measuremegamputing the MMSE estimate centroids of (15) scales as
training vectors{yl(l),yl@), ...} generated according to (2)2/V1][V2], and the size of the training data set. Representing the
are used to optimize eadhQ;, [ = 1,2. The MMSE estimate Most demanding training steps, the complexity of optimizing
centroidsz; v, ., v1 € Vi, va € Vs, for Algorithm 2 are pre- Ei and Ez via (17) scales asVi[|V2||Z:| and [V1|[Va]|Z2],
computed as the conditional expectations (15) using the soufggpectively. The complexity of optimizing via (20) scales
samples{x\", x{* ...}, and the indicegv",v(*,...} ob- as2V1[[Val. o _ _
tained from quantizindyl(l),yl@), ..}viaPQ, [=1,2. The 2) Online Communication PhaseThe main operations

multi-dimensional integrals in (13) and (20) are similarlf*€cuted for reconstructing a pair of source realizatigns
evaluated via Monte Carlo integration techniques. andx in the online phase dbQCS-PQ are summarized in

ConvergenceThe convergence of the iterative descent af*!90rthm 3. At each sensdr= 1,2, the measurement vector

gorithms in Algorithms 1 and 2 rests on the rationale behindl 'S Mapped to the (optimal) cell index’ €V, (i.e., the
the Lloyd and LBG algorithms [23]-[25]; at each iteratiofPUtPUt OfPQ) USINgGr = {g; ;... gy, } as

step, the objective function value either decreases or remains vf = argmin |y, — g, 12, [ =1,2. (21)
the same, and thus, the algorithm converges. However, since vEV, ’l

only necessary but not the sufficient optimality conditiongg, gven m={m(),...,m(V])} o, and
are met, the resulting quantization system is, at best, Ioca;lM ={h1,...,h 3}, the index v is mapped to

optimal [22], [23], [28], [88]. LBG type algorithms are knownyp,q message indexi; = m(v;), and further to the
to be sensitive to initialization, making them susceptible ®inary codewordh, ;- = ai(i¥) at E. The joint decoder
poor local minima. This accentuates the importance of propgr maps the reégived clodewords to the index pair
initialization of system blocks (i.e.r2, C;, and Cs). One (i%,3) = (a1—1(h1i*> a2_1(h2 Z)) and reconstructs
mitigation technique is the splitting method [23], which i§q ce  estimates as 5(17; Bi(it,i3) = CLir i+ uSINg

) 587525

applied in the numerical experiments in Section IV. Alternativgl = {C11 Lz iz} L= 1,2
shy Lyttt ML, L2 )0 » =

robust designs include a deterministic annealing method forCompIexity:Thanks to the imposed NN constraint for each
fixed-rate VQ design in [90], and its extension to entrop)le, I = 1,2, the encoding complexity remains tolerable: a
constrained design in [91].

Remark3. The entropy-constrained design has a built-in ten_gThe computational and memory requirements are assessed through most

d d h debook si iallv for | Imfluential factors by estimating the number of involved training vectors,
ency to reduce the codebook sizes, especially for large valdgsmands, and variables (i.e., indices) in one optimization step of an

of pu [22]. Namely, as Algorithm 2 proceeds, some message kigorithm.
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sensor has to only calculafg| distances in (21), followed by p(7;) = 1/(X), Vs =1,..., (X). For a givenT;, the non-

the table look-ups associated with, o;, andH;. Adjustment zero parts of® and ®,, denoted a®+. and ®, 1., are de-

of the pre-quantization rat&; = log,|V,| allows DQCS-PQ fined as i.i.d. Gaussian random variab®s, ~ N(0,03 1),

to trade-off between the encoding complexity and compressignd ©; . ~ N(0,031 k), s=1,..., (%) l=1,2. Thus,
performance. Clearly, a typical achievable performance ranye - ~ j\/(o, (gf:) + g%)IK). The (spatial) correlation be-
depends on the scaling and operation point of the sensigen the sensors is adjusted by parameter £ 0'2@/0'2@
setup, e.g., via source statistics, and parameWrsf;, K, with o2 = 1. Two types of measurement matricks and &,

®;, andoyy, [ = 1,2. Thus, the need to upscal® in a high- are considered by 1) drawing the entries from Gaussian distri-
dimensional setup may expand the VQ look-up table 8fze pution\/(0, 1/M), and normalizing the columns 4s |12 = 1,
intolerably high. Consequently, the proposB@CS-PQ is  and 2) taking the first (last)/ rows of anN' x N DCT-matrix,
mainly applicable to setups with moderate signal dimensiorfad normalizing the columns as |13 = 1.

At the cost of performance, the complexity could be restrainedpe splitting methotf [13], [23] is employed in opti-

by approximate methods, including SQ based approaches, giding both the pre-quantizers (Algorithm 1), and the en-
low-complexity VQ variants like tree-structured, multi-stepgoders and decoder (Algorithm 2). Unless otherwise stated,
and lattice VQs [13]. Ry =Ry =10 bits, and log,|T;| = logy|To| = {1, ...,8}
Remark 4. Even though an MMSE estimatebits. ForDQCS-PQ, the codebook${; and#. are generated
EX;[Y:1 =y1,Y2=y2], [ =1,2, is a constituent quantity via the Huffman algorithm, and the average rates are defined
in defining the optimal encoders and decoder, the novel prga (7). The weight parameter is set by a rulé 1. /log, ||,
guantization technique relieves the sensor of reconstructiwberey. is a non-negative constant. When, E,, andD are

it in the online communication phase (see Algorithm 3)ptimized for multiple (ascending) values @f, the quantities
This is different from the related works [65], [66], where thery, C1, andCs obtained for the preceding (smaller) are used
necessity of forming these exponentially complex estimatgs initialize Algorithm 2 for the nexiu..

[68]-[70] hinders the practical implementation. Recall that Two baseline QCS methods are considered, which, conform-
the pre-quantization also obviates the need of computing ting to the customary approaches, use fixed fte- log,|Z;|,
estimates in the offline training phase (see Algorithm 2). and rely on a VQ encoder that minimize MSE quantization

3) Optimal Codeword LengthsAs the rate approximation distortion:

(8) merely steers and primes the quantizer design in subsuming) v()-Eq-Dg: a method with separate NN encoding,

a desired source code, one must eventually generate the ang separate decoding, where the VQ encodeitiof
respective codebooks; and#; in practice. For the separate sensor minimizesY>, ;. p(i)E[[Y: — 9, 1311 = 4]
coding, the optimal codeword lengthsi,), i; € Z;, satisfying with encoder codepointsy,; € RM, and the de-

the Kraft inequality are known. For instance, (instantaneous) -oder consists of the MSE’Z-loptimaI decoder codevec-
Huffman coding [20] [17, Sect. 5.6], and arithmetic coding g cPsPs — B[Xy|I, = 4], i, € T;, for the associated
[85] [17, Sect. 13.3] perform close to the entropy bound Vorong; regions] = 1, 2.

Ry > H(L;), 1 =1,2 [22], [28]. 2) VQ-Es-D;: a method with separate encoding identical to
Remark5. Improved compression performance is achievable VQ-Es-Dg, but with joint decoding via decoder codevec-
by DSC of the message indices which takes the inter-sensor tors cffl'%‘ =E[Xi|1 = i1, 12 = 2], i1 € T4, iz € Iy,
correlation ofl; and I, into account. The optimal codeword 1=1,2.

Iengths,h holl/vevzr, are Ll;nkno(\;vn [28](.j Typigally, I%W-dznsit distortion is measured as
parity-check codes, turbo codes, and syndrome-based codes a 2 2

are employed to approach the Slepian-Wolf boundary [5],"" 1010g1°§?1/E[”X1HQ] + D2/E[[X2]3]) (dB), where
[92], [93]. Unfortunately, as the coding involves (large) block&[||X; 3] = Y- .%] p(To)E[IX:, 7. [13] = K (0% + 0&),

of indices, the increased complexity and delay of such nop- 1 2. The rate is measured d&,,. = R/2 (bits). Due to
instantaneous codes may become an issue. Potential varignésexponential complexity of quantizer parts in the offline
include the Slepian-Wolf type finite-dimensional codes fafaining phase, the experiments are confined to moderate
lossless/near-lossless coding introduced in [94], [95]. Nevejuantization rates and signal dimensions. Data sets of size
theless, these are outside the scope of this paper. 5 x 10° were used for training and performance evaluation.

IV. NUMERICAL RESULTS

Numerical results are presented to illustrate the distortioR- An lllustrative Example

rate behavior of the proposeBQCS-PQ method (Algo- visualizing the general operation BIQCS-PQ, con-

rithm 3), and provide comparison against baseline QCS megi]der a low-dimensional setup with — 3, M — 2, K — 1
ods. ST

) ) 108y the spliting procedure, a quantization system is first optimized
A. Simulation Setup for codebook size$Z;| = 2, I = 1,2 (|V;| for PQ;). Then, each resultant
. . codevector is split through small perturbation, and the algorithm is run for
Consider a setup with equal number of measur 1| = 4 using the new codevectors as initial ones (i.e., "warm start"). This
ments M £ M; = M,, and equal support probabilitiesgradual bifurcation is repeated until the desired codebook sizes are reached.
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© (d)

Cellindex 1 (2 |3 |4 |5(6|7|8|9|10{11]|12|13|14|15[16|17[18(19|20|21|22|23|24|25|26|27|28|29|30|31|32
Message index mapping 5 5/5|5|5|6|5
Message index mapping T, 8 8|8
(e

Fig. 3. lllustration ofDQCS-PQ in terms of (a) pre-quantizd?Q; and encodeE, (b) pre-quantizePQ- and encodeE-, (c) reconstruction codebodk,
(d) reconstruction codeboak,, and (e) message index mappings and 7. In (a) and (b), the black dots represent the codepapts . .., g; 35 of PQq

and PQ,; each dotted line represents the sparsity-dependent ¢parX; ,, n = 1,2, 3; each color indicates the seg‘l(z‘l) for message index; € Z;,
[ = 1,2 (the colors are equivalent in (e)). In (c) and (d), the dots represent the codevactors. . ., C; g g; the coordinate axes are shown as dashed lines.

o2y = 0.003, p = 10%, Gaussian measurement matrices  Firstly, the resulting performance figures 106)CS-PQ are
7 D,.. = —10.19dB andR,,. = 1.83 bits, andD,,. = —4.475
P, = 0.8472 08044 0.6982 dB and R.,. = 3 bits for VQ-Eg-Dj. This implies a striking

0.5312 0.5941 —0.7159|°’ . : LS
0.9966 —0.5589 —0.0016} (22) 39 % reduction of rate, and.7 dB decrease of distortion in

favor of DQCS-PQ.
0.0827 —0.8293  1.0000 The key function ofPQ; andPQ,, "encoder shaping", can
and quantization parametgrs = 0.5, |V;| = 32, and|Z;| = 8. be perceived from Fig. 3(a) and (b). Take as examples the mes-
The encoder/decoder sides optimized via Algorithms 1 andsage index; = 2 and I, = 7: the 5 cells assigned td; = 2,
are depicted in Fig. 3: (a) and (b) illustrate the outcomes dé., 7; *(2) = {5,6,7,8,10}, form an irregularly shaped re-
pre-quantization ofY; andY., and the subsequent messaggion of measurement vectors, whereas the region/foe 7
index mappingsr; and,, respectively; (c) and (d) depict theconsists of discontinuous cellé by =, ' (7) = {25, 32}. This
reconstruction codebooks andC,, respectively; (e) tabulatesshaping feature allows to merge the céls, ..., S; 32 (i.e.,
m andmy. The source codebookd; and H, are presented classify measurement (training) vectors) into message indices
in Table I. To get a better understanding on the main assets

) R P ; N i 1This can be interpreted as an index reuse, characteristic to a distributed
of DQCS-PQ, VQ-Es-Dj is similarly illustrated in Fig. 4. quantization setup [88].

P, =
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Fig. 4. lllustration of VQ-Es-Dj in terms of (a) encoder at sensbr(b) encoder at sens@; (c) decoder codevectors fa€;, and (d) decoder codevectors
for X5. The lines, dots, and colors have the meanings equivalent to those in Fig. 3.

TABLE | sourcesX; and X,. On the contrary, the encoder regions of
HUFFMAN SOURCE CODEBOOKSH1 AND H2 OF DQCS-PQ USED IN VQ-Eg-Dj in Fig. 4(a) are solely based on the probability

SECTIONIV-B mass of Yy, and the codevectors in Fig. 4(c) and (d) are

I;7T; | Codebook#H; | CodebookHs dispersed with ndk-sparse structure. Such incognizance of

1 10010 - the CS resulted in poor performance.

2 101 101 X . .

3 10000 _ Table | illustrates the power of entropy coding in

4 0 0 DQCS-PQ: the codebookg{; and H- contain only7 and

2 1010111 1 5 codewords (instead of), respectively, and the expected

7 _ 1001 codeword length is minimized by assigning the most frequent

8 10001 1000 indicesI; = I, = 4 the shortest codeword¥)”, the second

most frequent indice$; = I, = 5 the codeword$11”, and
so forth. Note that even though; contains5-bit codewords,

T, ={1,...,8},1=1,2, by taking the collective effect of the ftave for DQCS-PQ is 39 % lower (andDay. 5.7 dB lower)
CS and DSC into account. As a consequence, the partitionifign for VQ-Es-D; that uses fixed-lengtB-bit codewords.
in Fig. 3(a) follows to some extent the sparsity-dependent

linear projectionsgy X, + Wi, where ¢, € RM is nth C. Distortion-Rate Performance

column of®;, and.X; ,, is nth element ofX;, n = 1, 2, 3. Sim- Fig. 5(a) depicts the average distortidn,,. versus the
ilarly, Fig. 3(c) and (d) present that nearly all reconstructioaverage rateR.y. for N =20, M =8, K =2, 0%, = 0.01,
codevectors are (approximateli}-sparse vectors. As they arep™ = 103, and the Gaussian typ®; and ®,. By com-
also rather evenly distributed iR?, the codebook€; and pletely disregarding the signal correlatioiQ-Eg-Dg per-
Cy, presumably contain accurate estimates for Riesparse forms poorly. Significant gains are achieved B)-Eg-D;
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0\ for which the joint decoding effectively expands the code-
4VQ-EgDg book size from|Z;| to |Z;|* (especially for high correlation).
. #VQ-E D, However, since the encoders of both methods are blind to the
m -2 \@DQCS-PQ (1,_=0) peculiarities of the CS, and they use fixed rates, the proposed
2 8 DQCS-PQ (1 =0.25) variable-rate CS-awabQCS-PQ invariably obtains the best
% DOCS-PQ ( °:05 compression performance for all values jof, including the
| 1,=0.5) . . L .
o 4 ¢ fixed-rate versiony. = 0). Similar performance trend carries
S DQCSPQ (“c:0'75)< over all the subsequent experiments as well.
f= It can be seen thatVQ-Es-Ds saturates around the
4(,9) 6/ distortion D,,. = —5 dB. Such an unavoidable constant error
&) level is caused by the remote source coding setup in CS,
gl and, thus, also occurs for the other methods for sufficiently

(dB)

ave

Distortion D

(dB)

Distortion D

ave

A

high rates. Namely, regardless of the compression/coding

method, the CS parts with additive measurement noise
2 4 6 8 at the sensors prevent the perfect reconstructionXaf
Rate R_ (bits) and X, at the decoder, even for the rates approaching
@ ave infinity. For VQ-Eg-Dg, the error level is defined by
the rate-independent MMSE estimation error of the

orm 5 [ B [1Xe - B =yl s
For VQ-Es-Dj a}ﬁd DQCS-PQ, the level is given
by S [ [ B[~ BXY) =31, Y = vl

Y1 JYy2
f(y1,y2)dy1dya.

D. Influence of Weight Parametegr

The impact of weight parameter in DQCS-PQ can be
perceived from Fig. 5(a). By choosing an appropriate variable-
rate code,DQCS-PQ can flexibly trade-off the distortion-
rate performance, and thus, lends itself to varying compres-

&

1
N

2 4 6 8

sion scenarios. For instance, consider a rate-limited WSN
) application, where the maximum (source) rate is restricted
Rate R_  (bits) to, say, Rae = 5 bits due to, e.g., bad channel conditions,
(b) or congested data traffic. Via entropy coding of the message
indices, the reconstruction performance is improved from
Dive = —5.8 dB (e = 0) t0 Dyye = —7.6 dB (ue = 0.75).
Alternatively, consider an application with minimum required
reconstruction fidelity of, say),,. = —7 dB. With the aid of
variable-length coding, a significant rate reductionl &f bits
from R,y = 6.0 bits (u. = 0) t0 Rave = 4.5 bits (u. = 0.75)
is achieved.

E. Influence of Source Correlation

Fig. 5(a) — (c) show the compression performance for differ-
ent signal correlation levelg™ = {103,102, 10'}. As a first
remark, DQCS-PQ utilizes the signal correlation efficiently

for compressing the sparse sources. The higher the correlation,

2 4 6 8 the greater the compression gain is in favorlo®CS-PQ.

Rate R___(bits) For p°™ = 10° (high correlation), the distortiom,,. = —7
ave dB is achieved at rate®,.. = 6.7 bits for VQ-Eg-Dj, and
© 4.5 bits for DQCS-PQ (ue = 0.75). For p<™ = 10! (low

Fig. 5. Average distortion vs. average rate fér= 20, M =8, K = 2,the  grrelation). the respective rates = 7.4 and 6.0 bits
Gaussian typ@; and ®», and signal correlation parameter @£ = 103, ) b eyo ’ ' .

(b) p°o™™ = 102, and (c)pc™ = 10L. The colors and markers of the curvesNote that wherea¥Q-Eg-D; andDQCS-PQ perform better

in (b) and (c) are equivalent to those in (a).

with the increasing correlation, the indiscernible disparities of
the curves of fully separat¥ Q-Es-Dg are solely attributed
to different signal power&|||X;||3].
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F. Influence of Number of Measurements

Fig. 6 demonstrates the influence of different number of
CS measurementd/ = {2,3,4} in the setup withN = 10,
K =1, 0%, =0.01, p®T = 10%, and the DCT type®; and
®,. Unlike the other methodd)QCS-PQ achieves decent
performance even in a very noisy scenario (i.e., f6r= 2).
By increasing the measurements ¢ = 3, and further to
M = 4, the setup becomes less contaminated which allows
each QCS method to compress the sparse sources more
reliably. However, whereag€Q-Egs-Dg andVQ-Es-D; obtain
considerable gain when switching frod =3 to M = 4,
the respective improvement fa¥QCS-PQ is negligible. This
is congruent with the CS philosophy: whed is sufficient
for successful support recovery, a further increas@fotloes

(dB)

ave

Distortion D

1 2 3 4 5 6

) not provide significant gains. Accordingly, given thit is at
Rate R_ _ (bits) a satisfactory level, it is more cost-effective to improve the
@) reconstruction quality by increasing the rate. Since acquiring

more measurements can be expensive — or even infeasible — in
practice, the capability to operate at low signal-to-noise ratios
is indisputably an advantageous featureDg)CS-PQ.

(dB)

V. CONCLUSIONS ANDFUTURE WORK

ave

A distortion-rate optimized variable-rate distributed QCS
method was developed for efficient and complexity-
constrained acquisition of correlated sparse sources in WSNSs.
The proposed DSC method minimizes a weighted sum of
the average MSE signal reconstruction distortion, and the
average rate. As a specific target to ameliorate the practi-
cal feasibility, the encoding complexity of each sensor is
restrained by pre-discretizing the measurement vector space
1 2 3 4 5 6 via VQ. Following the entropy-constrained design, the method

bi incorporates a desired variable-rate code by means of rate
Rate Rave (bits) measures of an entropy bound to enhance the compression
(b) performance. Alternating optimization was used to derive
Culd ‘ ‘ ‘ ‘ necessary optimality conditions and propose practical training
\,\4\<\4VQ-ES-DS algorithms for a two-sensor system. The complexity aspects

VQ-E_-D of training and communication phases were discussed. Base
N *VOE_D, ft d tion ph d d. Based
@ DQCS-PQ (1 =0) on the numerical results, the proposed method has superior
8DQCS-PQ (MC:O.O5) | distortion-rate performance under varying signal correlation

DOCS-PO ( C—o D levels and signal-to-noise ratios. Moreover, the method is

e q adaptable to distinct compression settings with, e.g., stringent
DQCS-PQ (1=0.25) rate or distortion requirements. As the key finding, efficient
DQCS-PQ (1,=0.5) || finite-rate acquisition of correlated sparse sources calls for 1)
CS-awareness, 2) DSC design, and 3) entropy coding.

While VQ for pre-quantization is justifiable owing to the
coding optimality [89, Sect. 3.4], its applicability is limited
to moderate signal dimensions/quantization rates. As this is

-15¢ the first work on distortion-rate optimized QCS, sub-optimal
1 2 3 4 5 6 guantization methods necessary for high-dimensional setups
Rate R_(bits) (see Section 1lI-D) were left for future studies. Potential
ave extensions to enhance the compression performance include
© DSC of message indices (see Remark 5), and designing the
Fig. 6. Average distortion vs. average rate for= 10, K = 1, p°* = 10>, pre-quantizers jointly with the encoders and decoder. While
t]\'}[efgat%’ge(g’)hffIQT'he;”gngglﬁdo;gig:fao?‘i;‘zmcirr‘\tfeg%:(;' o oy SM-2 inspired by timely WSN applications like collaborative
are equivalent to those in (c). spectrum sensing is used as the signal model, other signal
types including JSM-1 and JSM-3 in [49], [54], and common
sparse signals in [77]-[79] are straightforwardly applicable.

Distortion D

(dB)

ave

-10¢

Distortion D
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However, by restricting to JSM-2 signals, the conducted exX21] J. ziv and A. Lempel, “Compression of individual sequences via
periments provide distinct insights and benchmarks for future
studies — both for experimental and theoretical ones. In fact,,
as the signal characteristics were not explicitly used in the
derivations, the generality extends beyond sparse signals and

CS-based sensors, i.e., the proposed design can be applied[?g}

a general distributed joint estimation and compression schemeg;
As the design adheres solely to source coding, reliable com-

munications of encoder outputs in a practical noisy channéf®
setup necessitates channel coding. For a mere concatenatjgy)
of the devised source encoders and channel encoders, a known

downside is the catastrophic effect of channel errors [96]:

few erroneously received bits of a variable-length code indu

B

ce

error propagation. On the theoretical side, while separate
source and channel coding is asymptotically optimal in a point28]
to-point setup owing to the celebrated Shannon’s separatigsy;
theorem [3, Theorem 21], the result does not hold in general
multi-user networks [97, Sect. 1.4.4]. Accordingly, a viablel30]
solution may be obtained via distributed joint source-channel
coding [96], [98]-[100].
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