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Abstract—This paper addresses lossy distributed source coding
for acquiring correlated sparse sources via compressed sensing
(CS) in wireless sensor networks. Noisy CS measurements are
separately encoded at a finite rate by each sensor, followed
by joint reconstruction of the sources at the decoder. We
develop a novel complexity-constrained distributed variable-
rate quantized CS method which minimizes a weighted sum
between the mean square error signal reconstruction distortion,
and the average encoding rate. The encoding complexity of
each sensor is restrained by pre-quantizing the encoder input,
i.e., the CS measurements, via vector quantization. Following
the entropy-constrained design, each encoder is modeled as a
quantizer followed by a lossless entropy encoder, and variable-
rate coding is incorporated via rate measures of an entropy
bound. For a two-sensor system, necessary optimality conditions
are derived, practical training algorithms are proposed, and
complexity analysis is provided. Numerical results show that the
proposed method achieves superior compression performance as
compared to baseline methods, and lends itself to versatile setups
with different performance requirements.

Index Terms—Distributed lossy source coding, joint sparsity,
entropy-constrained vector quantization, variable-length coding,
rate measure.

I. I NTRODUCTION

T HE proliferation of wireless sensor networks (WSNs),
especially due to the advent of the internet of things [1],

engenders the need of energy-efficient communication tech-
niques for resource-limited sensors in, e.g., environmental,
industrial, healthcare, and military applications. In a typical
monitoring task, geographically distributed sensors measure
a correlated information source, encode the measurements
separately into finite-rate bit sequences, and communicate
the messages to the sink for joint decoding of the sources.
Since wireless access consumes lots of battery energy [2],
source compression [3]–[5] is prevalently used to minimize
the number of transmissions to prolong the network lifetime.
In particular, the decentralized network structure calls for
distributed source coding (DSC) [5]–[7], commonly referred
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to as Slepian-Wolf coding [8]. Furthermore, as many sensor
signals are analog/continuous-valued, quantization [9]–[14] is
inevitable in practice, and, thus, the compression becomes
lossy [15].

An information theoretic foundation for lossy source coding
is the rate-distortion theory [16, Ch. 2] [17, Ch. 10], i.e.,
source coding with a fidelity criterion [18, Ch. 9]. Whereas
the theory is primarily applicable to performance analysis
and benchmarking, vector quantization (VQ) [13], [14] is a
practical compression method capable to achieve performance
arbitrary close to the theoretical optimum [3], [4], [19]. The
inevitable loss from a finite VQ dimension can be compensated
for by variable-length coding [20], [21] [17, Ch. 5] that assigns
shorter codewords to more frequent symbols to minimize the
average transmission rate. This can be realized by entropy-
constrained VQ (ECVQ) [22] that models the encoder as a
VQ followed by a lossless entropy encoder for the symbols.
In practice, VQs/ECVQs can be optimized by the Linde-
Buzo-Gray algorithm [23], descending from the iterative Lloyd
algorithm [24], [25].

In WSNs, standard source compression is altered by two
peculiarities. The first is a DSC setting where multiple sensors
separately measure, encode, and communicate multiple (cor-
related) sources to a sink for joint signal reconstruction. DSC
originates from the pioneering work by Slepian and Wolf [8]
for discrete sources, which is extended to Gaussian sources in
[26]. Distributed quantizer design for compressing correlated
sources appears in, e.g., [27]–[29], which incorporate entropy
coding via rate measures of entropy bounds. The second mod-
ification arises from remote sensing: encoding at each sensor
relies only on indirect observations of a source due to, e.g.,
a dedicated measurement device, or noise-corrupted sensor
inputs. This necessitates remote source coding, introduced
in the seminal work by Dobrushin and Tsybakov [30]. VQ
design for compressing a remote source is addressed in [31].
Combining these two factors gives rise to distributed joint
estimation and compression [32]. Distributed compression of
a remote source is addressed in [33], [34], the CEO problem
in [35], and DSC of multiple remote Gaussian sources in [36].
Related quantizer based studies include distributed estimation
of a remote source in [34], [37], [38], and its extension to
multiple remote sources in [39].

As an embodiment of remote source coding, compressed
sensing (CS) [40]–[48] is a recently emerged joint sampling
and compression paradigm which enables accuraite recon-
struction of sparse (or compressible) signals from a few
linear measurements. Sparse signals are encountered in, e.g.,
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environmental monitoring [49]–[51], source localization [52],
and cognitive radio applications like spectrum sensing and
direction of arrival estimation [53]. In particular, distributed
CS [49], [54] establishes a unified decentralized compres-
sion framework where intra- and inter-signal dependencies
of multi-dimensional compressible signals are exploited via
joint sparsity models. CS benefits from simple and universal
encoding by shifting most of the computational load to the
decoder [46].

Whereas the early era of CS operated exclusively on analog
signals, the practical necessity of converting the measurements
into finite-rate bit sequences initiated quantized CS (QCS)
[55]–[58]. Consequently, numerous QCS algorithms that ac-
commodate the non-linear impact of CS and quantization in
the encoder/decoder to ameliorate the signal recovery perfor-
mance have been developed. The works in [56], [59], [60] de-
vised optimized scalar quantizers (SQs) for a fixed CS decoder,
whereas quantization aware CS decoding algorithms for a fixed
SQ encoder developed in [57], [58], [61]–[63]. These methods,
however, are sub-optimal because they 1) optimize only either
the encoder or decoder, 2) use SQ instead of VQ, and/or 3)
minimize the measurement quantization distortion, which, due
to non-linearity of the CS and quantization, does not in general
minimize the signal reconstruction distortion [64, Sect. 3.2.3]
[61]. To this end, the first joint designs of VQ based encoder-
decoder pair(s) to minimize the signal reconstruction error in
QCS setups are [64]–[67]. Shiraziniaet al. derive necessary
optimality conditions for acquiring sparse sources over noisy
channels in a single-sensor case in [65], and in a two-sensor
DSC setup in [66], [67]. However, the enhanced compression
entails high encoding complexity: a sensor must reconstruct
a minimum mean square error (MMSE) estimate – a task of
exponential complexity [68]–[70]. As a countermeasure, QCS
methods that moderate encoding complexity via pre-quantizing
the encoder inputs were developed in a single-sensor case in
[71], and in a DSC setup, albeit for ideal channels, in [72].
Besides algorithm development, information theoretic limits
of QCS have been recently studied in, e.g., [73], [74].

Contributions: We consider DSC for finite-rate CS ac-
quisition of correlated sparse sources in WSNs. We de-
velop a novel distributed variable-rate QCS method under
complexity-constrained encoding which minimizes a weighted
sum between the mean square error (MSE) signal reconstruc-
tion distortion and the average encoding rate. The encoding
complexity of each sensor is restrained via pre-quantizing
the encoder input, i.e., the CS measurements, with a VQ.
Following the ECVQ approach, each encoder is modeled as a
quantizer followed by a lossless entropy encoder, and variable-
rate coding is incorporated via the rate measures of an entropy
bound. We confine to separate coding of sensors’ message
indices. Moreover, the code rates are merely approximated
via rate measures, i.e., finding the optimal codebooks are
outside the scope of this paper. We derive necessary optimality
conditions in a two-sensor case, propose practical training
algorithms, and provide complexity analysis. The proposed
method is numerically demonstrated to efficiently utilize signal
correlation, achieve high distortion-rate performance, and suit
to setups with different performance criteria.

Related works: To the best of our knowledge, this is the
first work on distortion-rate optimization in a (distributed)
QCS setup. The CS model bases on the distributed CS in
[49], [54]. The quantizer design is mostly related to [66],
[67] which, differently from our work, 1) focus on channel-
optimized VQs, 2) use fixed-rate VQs, and 3) involve complex
encoders impeding the practical implementation. The entropy
coding part utilizes the original ideas of [22], and those
extended to multiple remote sources in, e.g., [39]. Apart from
our initial works [71], [72], pre-quantization as a means to
moderate encoding complexity, and the use of variable-rate
coding in a QCS setup have not been addressed before. A
philosophy similar to our pre-quantization appears in multiple
prototype based approaches in, e.g., [75], [76]. Whereas [71]
focuses on joint source-channel coding in a single-sensor
setup, this paper takes a pure DSC approach similar to [72],
and extends it by providing 1) more detailed derivations
and model illustrations, 2) practical training algorithms, 3)
complexity analysis, and 4) more insightful and extensive
numerical experiments.

Organization: The system model is defined in Section II.
In Section III, the novel distributed QCS method is developed,
practical training algorithms are proposed, and algorithms’
complexities are analysed. Numerical results are presented in
Section IV. Section V summarizes the paper, and discusses
future work.

Notations: Italic capital letters denote random variables
(X); boldface non-italic capital letters denote random vectors
(X); boldface non-italic small letters denote realizations of
random vectors (x); boldface italic small and capital letters
denote deterministic vectors (a) and matrices (A), respectively;
calligraphy letters denote sets/alphabets (B). The identity
matrix of sizeN ×N is denoted asIN , and a matrix with
all entries zeros as0. (·)T denotes the matrix transpose, and
|S| denotes the cardinality of setS. ‖·‖0 and‖·‖2 denote the
ℓ0-norm andℓ2-norm, respectively.

II. SYSTEM MODEL

Consider a distributed QCS system consisting of two1 CS
based sensors and one sink, as depicted in Fig. 1. By the
DSC philosophy, each sensor acquires noisy CS measurements
of its source, converts them into finite-rate bit sequences via
separate encoding(i.e., without inter-sensor collaboration),
and communicates the messages to the sink forjoint decoding
of both sources. As the main focus is on source coding, the
transmissions from each sensor to the sink are assumed to be
error-free.

A. CS Signal Acquisition

The correlated sourcesX1 and X2 are given by a joint
sparsity model termed JSM-2 in [49], [54] as

Xl = Θ̄+Θl, l = 1, 2, (1)

1The presented alternating optimization framework, where one optimizes
one system block while keeping the others fixed, can be readily extended
to a general multi-sensor system, although the computational and memory
requirements rapidly grow intolerably high. Nevertheless, the main features
of the considered scheme are more lucidly highlighted in the two-sensor setup
while avoiding cumbersome derivations.
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Fig. 1. Distributed variable-rate QCS acquisition of correlated sparse sources
under complexity-constrained encoding.

where the common componentΘ̄ and innovation component
Θl are real-valued length-N random vectors which both are
K-sparse, and share the same random (unknown) support, i.e.,
the set of indices of non-zero components. Consequently, each
real-valued length-N source random vectorXl is K-sparse as
‖xl‖0 ≤ K ≤ N , l = 1, 2. The vectorsΘ̄, Θ1, andΘ2 are
assumed to be independent of each other. JSM-2 signals2 are
encountered in, e.g., a group of sensors monitoring an audio
source or spectrum occupancy [49].

Let Ts ⊆ {1, . . . , N} be an index set representing thesth
sparsity pattern with|Ts| = K, s = 1, . . . ,

(

N
K

)

. The
(

N
K

)

index
sets are different, i.e.,Ts \ Ts′ 6= ∅, ∀s′ 6= s = 1, . . . ,

(

N

K

)

.
Each supportTs is associated with thea priori probability

p(Ts) ∈ [0, 1] with
∑

(

N
K

)

s=1 p(Ts) = 1.
Each sensor measures the sourceXl through a fixed (and

known) CS measurement matrixΦl ∈ R
Ml×N as

Yl = ΦlXl +Wl, l = 1, 2, (2)

whereYl is the length-Ml measurement random vector, and
Wl ∼ N (0, σ2

WIMl
) is the measurement noise random vector.

WhereasK ≤ Ml ≤ N is assumed for a conventional CS
setup3, the design is not restricted to any particular range for
Ml. It is worth emphasizing that as (2) models the physics
of the sensing process, the encoder at each CS-based sensor
l = 1, 2 has no access toXl, but only toYl. Consequently,
the compression scheme falls into remote source coding [30].

The structure of eachΦl, l = 1, 2, has a significant impact
on the CS signal recovery performance. In this respect, the
restricted isometry property4 and the coherence ofΦl, which
establish guarantees on stable and accurate CS signal recon-
struction (in a non-quantized case), are often used to assess
the quality of eachΦl in CS [48], [81] [80, Ch. 6] [82,
Sect. 1.4.2 – 1.4.3] [83, Sect. 1.3.3]. Nonetheless, we need
no such assumptions ofΦ1 andΦ2.

2Common sparse signals have been also studied under compressive support
recovery and signal reconstruction problems with multiple measurement
vectors in a variety of monitoring applications [77]–[79].

3WhereasMl ≤ N complies with the fundamental CS theory, over-
sampling (i.e.,Ml > N ) may be useful in QCS setups. Namely, given a
quantization bit resolution of an A/D converter, over-sampling is a practical
– and often cost-effective – way to improve the reconstruction accuracy [58].

4For instance,Φl with i.i.d. Gaussian entries satisfies the restricted isometry
property with overwhelming probability ifMl ≥ ClKlog(N/K), whereCl

is a positive constant [80, Ch. 1].

B. Measurement Space Pre-Quantization

Prior to the actual source encoding, the input of the en-
coding system at each sensorl = 1, 2, i.e., the measurement
random vectorYl of (2), is discretized with a VQ. Each pre-
quantizer5 PQl is a focal block in restraining the encoding
complexity of a sensor while providing high compression
performance. As a by-product, it simplifies the optimization
design by converting optimization over continuous random
variables into that over discrete ones, and facilitates offline
training by allowing pre-computation of required input quan-
tities. A general description of each pre-quantizer is given
next whereas their specific optimization is deferred until
Section III-B.

Let Vl , {1, . . . , |Vl|} be a set ofcell indicesvl ∈ Vl with
pre-quantization rateR̄l = log2|Vl| bits/vector Yl for sen-
sor l = 1, 2. Let Gl , {gl,1, . . . , gl,|Vl|

} be apre-quantization
codebookconsisting of codepointsgl,vl

∈ R
Ml . Each pre-

quantizerPQl is a |Vl|-level VQ that partitions theMl-
dimensional measurement vector space determined by (2) into
cells Sl,1, . . . ,Sl,|Vl|, i.e., Sl,vl ∩ Sl,v′

l
= ∅, vl 6= v′l ∈ Vl, and

⋃|Vl|
vl=1 Sl,vl = R

Ml . Thus,PQl is a lossy mapping

PQl : R
Ml → Vl, l = 1, 2, (3)

i.e., for a given measurement realization, it assigns a cell index
asPQl(yl) = vl ∈ Vl, if yl ∈ Sl,vl .

Remark 1. The codepointsgl,1, . . . , gl,|Vl|
are intermediate

quantities for the actual encoding atEl, i.e., they are solely
used to determine in which cellSl,vl each realizationyl

belongs to,l = 1, 2. This classification is made explicit by
the encoding rule defined in Section III-B. In summary, the
quantized version of random vectorYl is never reconstructed
in the system.

C. Encoding and Decoding

The outputs of eachPQl, i.e., the cell indicesvl ∈ Vl,
are fed to encoderEl at each sensorl = 1, 2. Following a
customary approach,El is modelled as the concatenation of
a (lossy) quantizer, and a lossless entropy encoder [27], [28].
Accordingly, each sensor encodes the cell indices into message
indices, and further, into binary source codewords. The sink
uses the received pairs of codewords to jointly reconstruct
estimates ofX1 and X2. Distributed quantizer blocks are
described next; the treatment of entropy coding is elaborated
in Section II-D.

1) Separate Encoders:Let Il , {1, . . . , |Il|} be a set of
message indicesil ∈ Il, |Il| ≤ |Vl|, for sensorl = 1, 2. Let
Hl , {hl,1, . . . , hl,|Hl|}, |Hl| = |Il|, be a source codebook
consisting of binarycodewords. Each encoder is a composite
mappingEl : αl ◦ πl as

El : Vl → Il → Hl, l = 1, 2. (4)

The first mappingπl : Vl → Il, termed themessage in-
dex mapping, maps each cell indexvl ∈ Vl into a mes-
sage indexil ∈ Il, i.e., πl = {πl(1), . . . , πl(|Vl|)}, where

5Pre-quantization has also a pragmatic aspect: prior to source encoding, the
sensor inputs are necessarily discretized with an A/D converter in any digital
sensor device.
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Fig. 2. Interconnections between the indices ofPQl andEl for |Vl| = 8 and
|Il| = 4, l = 1, 2. Note thatIl = 3 is assigned no cell indexvl ∈ Vl.

πl(vl) ∈ Il. Given πl, eachil ∈ Il is associated with a set
of cell indices mapped to itself, i.e., the inverse image
π−1
l (il) = {vl ∈ Vl|πl(vl) = il}. Note that for|Il| < |Vl|, πl

is a many-to-one mapping, i.e., it performslossycompression
of the cell indexVl. This accounts for the prefix "pre" for
PQl, as each sensor has a concatenation of two quantizers:
the VQ of PQl, and the message index mappingπl in El.
Interconnections between the indices ofPQl and El are
illustrated in Fig. 2.

Given an entropy code, the second mappingαl : Il → Hl is
a one-to-onelosslessmapping from the set of message indices
to binary source codewordshl,il ∈ Hl, i.e., αl(il) = hl,il ,
il ∈ Il. Fixed-to-variable-length coding is assumed, i.e., each
indexil ∈ Il is mapped to one codeword at a time, whereas the
binary representations ofhl,il ∈ Hl have, in general, different
lengths.

2) Joint Decoder: The joint decoder comprises of two
composite mappingsD : {β1 ◦ α

−1
1 , β2 ◦ α

−1
2 } as

D : (H1 ×H2) → (I1 × I2) → Cl, l = 1, 2. (5)

The first mappingsα−1
l : Hl → Il, l = 1, 2, decode the

entropy codes, i.e., the received codewordhl,il ∈ Hl is used
to recover the (transmitted) message indexil ∈ Il. By this
procedure, we confine to separate coding6 of message indices
I1 andI2. Owing to the information lossless property, the pairs
(α1, α

−1
1 ) and(α2, α

−1
2 ) constitute uniquely decodable codes.

As for the second mappingsβl : (I1 × I2) → Cl, the de-
coded message indices are used to jointly reconstruct estimates
of sourcesX1 and X2 as x̂1 := β1(i1, i2) = c1,i1,i2 and
x̂2 := β2(i1, i2) = c2,i1,i2 , wherecl,i1,i2 ∈ R

N is thecodevec-
tor of a reconstruction codebookCl , {cl,1,1, . . . , cl,|I1|,|I2|},
|Cl| = |I1||I2|, l = 1, 2. Thus, the decoderD performs a single
operation to 1) invert the quantization/encoding steps applied
to Y1 andY2, and 2) reconstruct the signal estimates ofX1

6Separate coding enables low-complexity and low-delay coding as the pairs
(αl, α

−1

l
), l = 1, 2, can be chosen to constitute twoinstantaneouslossless

source codes.

andX2, given the underlying distributed CS setup.

D. Entropy Coding

The pairs (α1, α
−1
1 ) and (α2, α

−1
2 ) can realize different

entropy coding classes in the system. In practice, the choice
for used source code may depend on, e.g., application require-
ments like reconstruction fidelity and maximum allowed delay
(i.e., coding block length), and implementation factors such
as sensors’ computation and memory capabilities. A unified
framework for subsuming entropy coding in the distributed
quantizer design is introduced next.

1) Average Rate:Let Rl be the average encoding rate in
bits/vectorYl for sensorl = 1, 2. Thus, the average sum rate
of the sensors is

R , R1 +R2. (6)

In practice,Rl is determined by the average codeword length
of the codebookHl, i.e.,

Rl , E[γ(·)] =
∑|Il|

il=1 p(il)γ(il), l = 1, 2, (7)

where γ(il) is the length of codewordhl,il ∈ Hl, and
p(il) , Pr(Il = il) is the probability of indexil ∈ Il. An
alternative rate definition is presented in the following.

2) Rate Measure:Following the approaches in [22], [27],
[28] [29, Sect. 4.2], instead of using (7), the average rate is
approximated via theentropy boundof a source code7. Let
r(p(il)) be arate measurewhich is a function of the message
index probabilitiesp(il), il ∈ Il, l = 1, 2. Accordingly,R in
(6) is given as the expectation of the rate measures, i.e.,

R ,
∑2

l=1

∑|Il|
il=1 p(il)r(p(il)). (8)

As a major benefit, the rate definition in (8) permits flexible
treatment of the entropy coding without tying the design to
any particular source code.

Entropy bounds and their associated rate measures
for various coding settings have been listed in, e.g.,
[27] [29, Sect. 4.2]. For the considered separate cod-
ing, rsep(p(il)) = −log2p(il), il ∈ Il, and, thus, the average
sum rate is approximated asRsep = H(I1) +H(I2), where

H(Il) = −
∑|Il|

il=1 p(il)log2p(il) is the entropy of message
index Il, l = 1, 2.

III. D ISTRIBUTED VARIABLE -RATE QCS METHOD

This section describes a distortion-rate optimization frame-
work for the variable-rate communication system of Fig. 1.
A novel distributed QCS method for efficient acquisition of
the correlated sparse sourcesX1 andX2 under complexity-
constrained encoding is developed. Practical training algo-
rithms are proposed, and implementation and complexity
aspects are discussed.

A. Problem Formulation

Let X̂l be a length-N random vector that represents the
estimate of sourceXl, l = 1, 2, at the output of decoderD.

7The design of practical codes is beyond the scope of this paper.
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The average sum MSE reconstruction distortion is defined as

D , D1 +D2 =
∑2

l=1 E
[

‖Xl − X̂l‖22
]

, (9)

where the expectationE[·] is taken over the distributions ofXl

andWl, l = 1, 2. Furthermore, letLµ(D,R) be a weighted
distortion-rate cost function as

Lµ(D,R) , (1− µ)D + µR, (10)

whereµ ∈ [0, 1] is a weighting parameter for adjusting the
distortion-rate trade-off, andR is the average sum rate given
in (8).

The objective is to minimizeLµ(D,R) in (10) for a givenµ
by optimizing the pre-quantizersPQl (i.e., the pre-quantization
codebooksGl), the encodersEl (i.e., the message index map-
pings πl), and the decoderD (i.e., the reconstruction code-
booksCl) such that the pre-quantization cellsSl,vl , vl ∈ Vl, at
eachPQl, l = 1, 2, satisfy a nearest-neighbor (NN) condition
[84]. As will be elaborated later, this structural constraint is
focal in restraining sensors’ encoding complexity. Since the
joint optimization of all these blocks is intractable, the design
is split into two steps: first, eachPQl is optimized under the
NN constraints (Section III-B), followed by the optimization of
E1, E2, andD for fixed pre-quantizers (Section III-C). Despite
the sub-optimality, the approach is empirically shown to yield
satisfactory performance (Section IV).

The rate termµR in (10) eliminates the need of con-
structing specific codebooksH1 andH2 in the optimization
phase. As demonstrated in [22] (for a point-to-point case),
decent performance is achievable by subsuming rate measures
rsep(p(il)) = −log2p(il), il ∈ Il, in the optimization loop,
followed by a source code whose average codeword length
is close to the index entropy [22]. These include Huffman
codes [20] [17, Sect. 5.6], and arithmetic codes [85]. Note
that µ = 0 realizes a minimum distortion fixed-rate method
with Rl = log2|Il|, l = 1, 2.

B. Optimization of Pre-Quantizers

At eachPQl, the cellsSl,vl and codepointsgl,vl , vl ∈ Vl,
of the |Vl|-level VQ are optimized to minimize the MSE
distortion induced by discretizing the measurement vector
space (see (2)), i.e., the distortion

Dpq
l ,

∑|Vl|
vl=1 p(vl)E

[

‖Yl− gl,vl‖
2
2|Vl = vl

]

, l = 1, 2. (11)

This approach inherently results in the required NN encoding
(cf. (12)). Since finding theglobally optimal partition and
codebook of a quantizer is intractable, an alternating opti-
mization technique [23]–[25], [27], [65], [66], [86]–[88] is
adopted to derive the necessary optimality conditions. Such
conditions serve as a practical means to train eachPQl,
l = 1, 2, via principles of the iterative Linde-Buzo-Gray (LBG)
algorithm [23], elaborated in Section III-D.

For given codepointsgl,vl , vl ∈ Vl, the optimal cells which
minimizeDpq

l satisfy the NN condition [23]

S∗
l,vl

=
{

yl : ‖yl−gl,vl
‖22 ≤ ‖yl−gl,v′

l
‖22, ∀v

′
l 6= vl

}

, vl ∈ Vl,

(12)

i.e., the cells form a Voronoi partition [89, Ch. 5.1]. For given
cellsSl,vl , vl ∈ Vl, the optimal codepoints satisfy the centroid
condition [23]

g∗l,vl = E[Yl|Vl = vl] =
1

p(vl)

∫

yl∈Sl,vl

ylf(yl)dyl, vl ∈ Vl,

(13)
wheref(yl) is the probability density function ofYl.

C. Alternating Optimization of Encoders & Decoder

In this section, the encodersE1 and E2, and decoderD
are optimized to minimizeLµ(D,R) in (10) for fixedPQ1

andPQ2 (designed as described in Section III-B and III-D).
The optimization involves six sets of optimization variables:
the message index mappingsπ1 and π2, the rate measures
r(p(i1)) andr(p(i2)), and the codevectorsc1,i1,i2 andc2,i1,i2 ,
i1 ∈ I1, i2 ∈ I2. Due to the intractability of joint optimization,
the alternating optimization principles (see Section III-B) are
applied, and the necessary optimality conditions for each
variable set while keeping the others fixed are derived. The
implementation perspective is detailed in Section III-D.

1) Message Index Mappings:Firstly, the minimization of
Lµ(D,R) over the message index mappingπl is independent
of r(p(il′)), il′ ∈ Il′ , l 6= l′. Hence, for fixedr(p(il)), il ∈ Il,
C1, C2, andπl′ , the optimal message index mappingπ∗

l for
sensorl 6= l′ is the one that minimizesLµ(D,R). Let us start
by reformulating the distortion termD of Lµ(D,R) as

D =
∑2

l=1

∑

v1∈V1

∑

v2∈V2

∫

y1

∫

y2

p(v1, v2|y1,y2)

E
[

‖Xl − cl,π1(v1),π2(v2)‖
2
2|V1 = v1, V2 = v2, . . .

Y1 = y1,Y2 = y2

]

f(y1,y2)dy1dy2

(a)
=

∑2
l=1

∑

v1∈V1

∑

v2∈V2

∫

y1∈S1,v1

∫

y2∈S2,v2
{

E[‖Xl‖22|Y1 = y1,Y2 = y2] + ‖cl,π1(v1),π2(v2)‖
2
2−

2cT
l,π1(v1),π2(v2)

E[Xl|Y1 = y1,Y2 = y2]
}

f(y1,y2)dy1dy2
(b)
=

∑2
l=1

∑

v1∈V1

∑

v2∈V2
p(v1, v2)

{

E[‖Xl‖22|V1 = v1, V2 = v2] + ‖cl,π1(v1),π2(v2)‖
2
2−

2cT
l,π1(v1),π2(v2)

zl,v1,v2

}

(14)
where (a) follows from i) the Markov proper-
ties Vl → Yl → Yl′ → Vl′ , Xl → (V1, V2) → Cl,
Xl → Yl → Vl, and Xl → Yl′ → Vl′ , l 6= l′,
and ii) the fact that p(vl|yl) = 1, if yl ∈ Sl,vl ,
and 0 otherwise, l = 1, 2; (b) follows from
p(v1, v2) =

∫

y1∈S1,v1

∫

y2∈S2,v2

f(y1,y2)dy1dy2, and the

definition of a vectorzl,v1,v2 ∈ R
N as

zl,v1,v2 , E [Xl|V1 = v1, V2 = v2] , l = 1, 2

=
1

p(v1, v2)

∫

y1∈S1,v1

∫

y2∈S2,v2

E[Xl|Y1 = y1,Y2 = y2]f(y1,y2)dy1dy2,
(15)

which represents thecentroid of the minimum mean square
error (MMSE) estimates of sourceXl, l = 1, 2, given such
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measurement realizationsy1 andy2 that are pre-quantized to
the cell index pair(v1, v2), v1 ∈ V1, v2 ∈ V2 atPQ1 andPQ2.

Remark2. A closed-form expression of the MMSE estimate
E[Xl|Y1 = y1,Y2 = y2], l = 1, 2, in (15) has been derived
for a similar signal setup in, e.g., [66, Proposition 1]. Never-
theless, as it will turn out later, computation of these complex
estimates is obviated by means of the pre-quantizers both in
the offline training and online communication phase.

Finally, the rate termR in Lµ(D,R) can be extended as

R =
∑2

l=1

∑

il∈Il
p(il)r(p(il))

=
∑2

l=1

∑

vl∈Vl
p(vl)r

(

p(πl(vl))
)

.
(16)

Combining (14) and (16), and dropping the
terms E[‖Xl‖

2
2|V1 = v1, V2 = v2] not affecting the

minimization, finding the optimal message index mapping
π∗
l = {π∗

l (1), . . . , π
∗
l (|Vl|)} for each sensorl = 1, 2 separates

into |Vl| subproblems. Namely, the optimal message index for
a v1th cell of sensor1 is given by the minimization problem

π∗
1(v1) = argmin

π1(v1)∈I1

{

(1 − µ)
∑2

l=1

∑

v2∈V2
p(v1, v2)

(

‖cl,π1(v1),π2(v2)‖
2
2 − 2cT

l,π1(v1),π2(v2)
zl,v1,v2

)

+

µp(v1)r
(

p(π1(v1))
)

}

, ∀v1 ∈ V1.
(17)

Each optimal message indexπ∗
2(v2), v2 ∈ V2, for sensor2 is

similarly found by swapping the roles of the sensor indices.

2) Rate Measures:The rate measure update follows the
procedures in [22], [27]. Accordingly, for fixedπl, the optimal
rate measures for each sensorl = 1, 2 are given as

r∗(p(il)) = −log2p(il), ∀il ∈ Il,
= −log2

∑

vl∈π
−1

l
(il)

p(vl).
(18)

By (18), the average sum rate (8) becomes
R = H(I1) +H(I2), whereH(Il) = −

∑|Il|
il=1 p(il)log2p(il)

is the entropy ofIl, l = 1, 2.

3) Reconstruction Codebooks:Firstly, the minimization of
Lµ(D,R) in (10) with respect to the codebookCl is indepen-
dent ofR, andCl′ , l′ 6= l. Accordingly, for fixedπ1 andπ2, the
optimal reconstruction codebookC∗

l = {c∗l,1,1, . . . , c∗
l,|I1|,|I2|

}
for source l = 1, 2 is found from solving|I1||I2| separate
optimization problems for each index pair(i1, i2), i1 ∈ I1,
i2 ∈ I2, as

c∗l,i1,i2 = argmin
cl,i1,i2

∈RN

E
[

‖Xl − cl,i1,i2‖
2
2|I1= i1, I2= i2

]

. (19)

From (19), eachc∗l,i1,i2 is given by the MMSE estimate of
sourceXl, l = 1, 2, given the message index pair(i1, i2) [66],

Algorithm 1 Training algorithm forPQl, l = 1, 2 (Offline).
Inputs: a) CS matrixΦl; b) measurement training vectors
{y

(1)
l ,y

(2)
l , . . .}; c) pre-quantization ratēRl.

Initialization: Initial codebookGl = {gl,1, . . . , gl,|Vl|
}.

Repeat
1) For givenGl, find the optimal cellsS∗

l,vl
, vl ∈ Vl, by

classifying the vectors{y(1)
l ,y

(2)
l , . . .} according to (12).

2) For givenSl,vl , vl ∈ Vl, compute the optimal codepoints
g∗l,vl , vl ∈ Vl, as the conditional expectations in (13).
until convergence
Output: Pre-quantization codebookGl = {gl,1, . . . , gl,|Vl|

}.

i.e.,

c∗l,i1,i2 = E [Xl|I1 = i1, I2 = i2] , ∀i1 ∈ I1, i2 ∈ I2
=

∑

v1∈V1

∑

v2∈V2
p(v1, v2|i1, i2)

E [Xl|I1 = i1, I2 = i2, V1 = v1, V2 = v2]
(a)
=

∑

v1∈V1

∑

v2∈V2

p(v1, v2)p(i1, i2|v1, v2)

p(i1, i2)
E [Xl|V1 = v1, V2 = v2]

(b)
=

∑

v1∈π
−1

1
(i1)

∑

v2∈π
−1

2
(i2)

p(v1, v2)

p(i1, i2)
E [Xl|V1 = v1, V2 = v2]

(c)
=

∑

v1∈π
−1

1
(i1)

∑

v2∈π
−1

2
(i2)

p(v1, v2)zl,v1,v2
∑

v1∈π
−1

1
(i1)

∑

v2∈π
−1

2
(i2)

p(v1, v2)
,

(20)
where(a) follows from the Markov propertiesXl → Vl → Il
andXl → Vl′ → Il′ , l 6= l′; (b) follows from the Markov prop-
ertyIl → Vl → Vl′ → Il′ , l 6= l′, and the fact thatp(il|vl) = 1,
if πl(vl) = il, and0 otherwise;(c) follows from (15).

D. Algorithm Implementation

Implementation aspects of the proposed method, termed
DQCS-PQ, are elaborated next. Two offline training algo-
rithms, and the algorithm for online communication phase are
proposed. Each algorithm’s complexity in terms of computa-
tional and memory requirements is also analyzed.

1) Offline Training Phase:The proposedoffline training
algorithm for optimizing eachPQl, l = 1, 2, is described in
Algorithm 1, and the algorithm for optimizingE1, E2, andD is
presented in Algorithm 2. The foundation of both algorithms
is the iterative Lloyd algorithm [23], [25]: in Algorithm 1,
eachPQl, l = 1, 2, is optimized by successively applying the
necessary optimality conditions (12) and (13) (Steps 1) and
2)). Similarly, the optimization ofE1, E2, andD in Algorithm 2
relies on the six-step iteration loop8, in which the optimality
conditions (17), (18), and (20) (Steps 1) – 3)) are first applied
with respect to sensor1, and then, with respect to sensor2.
Once Algorithm 2 has converged, the resulting message index
probabilitiesp(il), il ∈ Il, l = 1, 2, are used to generate the
desired binary source codebooksH1 andH2.

The requisite training data sets for Algorithms 1 and
2 are generated as follows. Source and noise samples
{x

(1)
l ,x

(2)
l , . . .} and{w(1)

l ,w
(2)
l , . . .} are created by sampling

8Other optimization orders within the sequential algorithm could be con-
sidered as well.
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Algorithm 2 Training algorithm forE1, E2, andD (Offline).

Inputs: a) CS matricesΦl; b) pre-quantization rates̄Rl; c)
codebook sizes|Il|; d) rate measuresr(p(il)), il ∈ Il; e)
weight parameterµ ∈ [0, 1]; f) MMSE estimate centroids
zl,v1,v2 , v1 ∈ V1, v2 ∈ V2, l = 1, 2.
Initializations: a) Initial codebooks
Cl = {cl,1,1, . . . , cl,|I1|,|I2|}, l = 1, 2; b) initial message
index mappingπ2 = {π2(1), . . . , π2(|V2|)}.
Repeat
for l = 1, 2 do

1) For given C1, C2, πl′ , l′ 6= l, and r(p(il)),
il ∈ Il, find the optimal message index mapping
π∗
l = {π∗

l (1), . . . , π
∗
l (|Vl|)} via (17).

2) For givenπl, update the rate measuresr(p(il)), il ∈ Il,
according to (18).
3) For givenπ1 andπ2, compute the optimal codevectors
c∗l,i1,i2 , i1 ∈ I1, i2 ∈ I2, as the conditional expectations
in (20).

end for
until convergence
Generate the binary source codebooksHl using the index
probabilitiesp(il), il ∈ Il, l = 1, 2.
Outputs: Message index mappings
πl = {πl(1), . . . , πl(|Vl|)}; source codebooks
Hl = {hl,1, . . . , hl,|Hl|}; reconstruction codebooks
Cl = {cl,1,1, . . . , cl,|I1|,|I2|}; encoder mappings αl;
decoder mappingsα−1

l andβl, l = 1, 2.

from their respective distributions. Then, the measurement
training vectors{y(1)

l ,y
(2)
l , . . .} generated according to (2)

are used to optimize eachPQl, l = 1, 2. The MMSE estimate
centroidszl,v1,v2 , v1 ∈ V1, v2 ∈ V2, for Algorithm 2 are pre-
computed as the conditional expectations (15) using the source
samples{x(1)

l ,x
(2)
l , . . .}, and the indices{v(1)l , v

(2)
l , . . .} ob-

tained from quantizing{y(1)
l ,y

(2)
l , . . .} via PQl, l = 1, 2. The

multi-dimensional integrals in (13) and (20) are similarly
evaluated via Monte Carlo integration techniques.

Convergence:The convergence of the iterative descent al-
gorithms in Algorithms 1 and 2 rests on the rationale behind
the Lloyd and LBG algorithms [23]–[25]; at each iteration
step, the objective function value either decreases or remains
the same, and thus, the algorithm converges. However, since
only necessary but not the sufficient optimality conditions
are met, the resulting quantization system is, at best, locally
optimal [22], [23], [28], [88]. LBG type algorithms are known
to be sensitive to initialization, making them susceptible to
poor local minima. This accentuates the importance of proper
initialization of system blocks (i.e.,π2, C1, and C2). One
mitigation technique is the splitting method [23], which is
applied in the numerical experiments in Section IV. Alternative
robust designs include a deterministic annealing method for
fixed-rate VQ design in [90], and its extension to entropy-
constrained design in [91].

Remark3. The entropy-constrained design has a built-in ten-
dency to reduce the codebook sizes, especially for large values
of µ [22]. Namely, as Algorithm 2 proceeds, some message in-

Algorithm 3 Distributed variable-rate QCS method with
complexity-constrained encoding (DQCS-PQ) (Online).

Inputs: a) CS matricesΦl; b) PQl: codebookGl; c) El:
mappingsπl and αl, and codebookHl; d) D: mappings
α−1 andβl, and codebooksHl andCl, l = 1, 2.
Separate encoding at sensorl = 1, 2:
(1) Acquisition of CS measurementsyl according to (2).
(2) PQl: Assignment of pre-quantization indexv∗l via (21)
usingGl.
(3) El: a) Assignment of message index asi∗l = πl(v

∗
l );

b) Assignment of binary codeword ashl,i∗
l
= αl(i

∗
l ).

Joint decoding at the sink:
(4) D: a) Decoding of binary codewords as
(i∗1, i

∗
2) =

(

α−1
1 (h1,i∗

1
), α−1

2 (h2,i∗
2
)
)

; b) Joint reconstruction
of source estimates aŝxl = βl(i

∗
1, i

∗
2) = cl,i∗

1
,i∗

2
using Cl,

l = 1, 2.

dex, say̆i1 ∈ I1, may become unpopulated (i.e.,π−1
1 (̆i1) = ∅)

in Step 1). Consequently, the rate measure in Step 2) becomes
r∗(p(̆i1)) = ∞, and the codevectorsc1,̆i1,1, . . . , c1,̆i1,|I2|

and
c2,̆i1,1, . . . , c2,̆i1,|I2|

in Step 3) become undefined. It was
conjectured in [22] that, unlike for a fixed-rate quantizer, there
is no rationale to re-include such unassigned indices in the
subsequent iterations.

Complexity:The complexity9 of optimizing the cells of each
PQl, l = 1, 2, via (12) scales as the number of levels|Vl|, and
the size of the training data set; the complexity of optimizing
the codepoints via (13) scales as|Vl|. The complexity of
computing the MMSE estimate centroids of (15) scales as
2|V1||V2|, and the size of the training data set. Representing the
most demanding training steps, the complexity of optimizing
E1 and E2 via (17) scales as|V1||V2||I1| and |V1||V2||I2|,
respectively. The complexity of optimizingD via (20) scales
as2|V1||V2|.

2) Online Communication Phase:The main operations
executed for reconstructing a pair of source realizationsx1

andx2 in the online phase ofDQCS-PQ are summarized in
Algorithm 3. At each sensorl = 1, 2, the measurement vector
yl is mapped to the (optimal) cell indexv∗l ∈ Vl (i.e., the
output ofPQl) usingGl = {gl,1, . . . , gl,|Vl|

} as

v∗l = argmin
vl∈Vl

‖yl − gl,vl‖
2
2, l = 1, 2. (21)

For given πl = {πl(1), . . . , πl(|Vl|)}, αl, and
Hl = {hl,1, . . . , hl,|Hl|}, the index v∗l is mapped to
the message indexi∗l = πl(v

∗
l ), and further to the

binary codewordhl,i∗
l
= αl(i

∗
l ) at El. The joint decoder

D maps the received codewords to the index pair
(i∗1, i

∗
2) =

(

α−1
1 (h1,i∗

1
), α−1

2 (h2,i∗
2
)
)

, and reconstructs
source estimates as x̂l = βl(i

∗
1, i

∗
2) = cl,i∗

1
,i∗

2
using

Cl = {cl,1,1, . . . , cl,|I1|,|I2|}, l = 1, 2.
Complexity:Thanks to the imposed NN constraint for each

PQl, l = 1, 2, the encoding complexity remains tolerable: a

9The computational and memory requirements are assessed through most
influential factors by estimating the number of involved training vectors,
summands, and variables (i.e., indices) in one optimization step of an
algorithm.
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sensor has to only calculate|Vl| distances in (21), followed by
the table look-ups associated withπl, αl, andHl. Adjustment
of the pre-quantization ratēRl = log2|Vl| allows DQCS-PQ
to trade-off between the encoding complexity and compression
performance. Clearly, a typical achievable performance range
depends on the scaling and operation point of the sensing
setup, e.g., via source statistics, and parametersN , Ml, K,
Φl, andσ2

W, l = 1, 2. Thus, the need to upscalēRl in a high-
dimensional setup may expand the VQ look-up table size2R̄l

intolerably high. Consequently, the proposedDQCS-PQ is
mainly applicable to setups with moderate signal dimensions.
At the cost of performance, the complexity could be restrained
by approximate methods, including SQ based approaches, and
low-complexity VQ variants like tree-structured, multi-step,
and lattice VQs [13].

Remark 4. Even though an MMSE estimate
E[Xl|Y1 = y1,Y2 = y2], l = 1, 2, is a constituent quantity
in defining the optimal encoders and decoder, the novel pre-
quantization technique relieves the sensor of reconstructing
it in the online communication phase (see Algorithm 3).
This is different from the related works [65], [66], where the
necessity of forming these exponentially complex estimates
[68]–[70] hinders the practical implementation. Recall that
the pre-quantization also obviates the need of computing the
estimates in the offline training phase (see Algorithm 2).

3) Optimal Codeword Lengths:As the rate approximation
(8) merely steers and primes the quantizer design in subsuming
a desired source code, one must eventually generate the
respective codebooksH1 andH2 in practice. For the separate
coding, the optimal codeword lengthsγ(il), il ∈ Il, satisfying
the Kraft inequality are known. For instance, (instantaneous)
Huffman coding [20] [17, Sect. 5.6], and arithmetic coding
[85] [17, Sect. 13.3] perform close to the entropy bound
Rl ≥ H(Il), l = 1, 2 [22], [28].

Remark5. Improved compression performance is achievable
by DSC of the message indices which takes the inter-sensor
correlation ofI1 and I2 into account. The optimal codeword
lengths, however, are unknown [28]. Typically, low-density
parity-check codes, turbo codes, and syndrome-based codes
are employed to approach the Slepian-Wolf boundary [5],
[92], [93]. Unfortunately, as the coding involves (large) blocks
of indices, the increased complexity and delay of such non-
instantaneous codes may become an issue. Potential variants
include the Slepian-Wolf type finite-dimensional codes for
lossless/near-lossless coding introduced in [94], [95]. Never-
theless, these are outside the scope of this paper.

IV. N UMERICAL RESULTS

Numerical results are presented to illustrate the distortion-
rate behavior of the proposedDQCS-PQ method (Algo-
rithm 3), and provide comparison against baseline QCS meth-
ods.

A. Simulation Setup

Consider a setup with equal number of measure-
ments M , M1 = M2, and equal support probabilities

p(Ts) = 1/
(

N
K

)

, ∀s = 1, . . . ,
(

N
K

)

. For a givenTs, the non-
zero parts ofΘ̄ andΘl, denoted as̄ΘTs

andΘl,Ts
, are de-

fined as i.i.d. Gaussian random variablesΘ̄Ts
∼ N (0, σ2

Θ̄
IK),

and Θl,Ts
∼ N (0, σ2

ΘIK), s = 1, . . . ,
(

N
K

)

, l = 1, 2. Thus,
Xl,Ts

∼ N
(

0, (σ2
Θ̄
+ σ2

Θ)IK
)

. The (spatial) correlation be-
tween the sensors is adjusted by parameterρcorr , σ2

Θ̄
/σ2

Θ

with σ2
Θ̄

= 1. Two types of measurement matricesΦ1 andΦ2

are considered by 1) drawing the entries from Gaussian distri-
butionN (0, 1/M), and normalizing the columns as‖ · ‖22 = 1,
and 2) taking the first (last)M rows of anN ×N DCT-matrix,
and normalizing the columns as‖ · ‖22 = 1.

The splitting method10 [13], [23] is employed in opti-
mizing both the pre-quantizers (Algorithm 1), and the en-
coders and decoder (Algorithm 2). Unless otherwise stated,
R̄1 = R̄2 = 10 bits, and log2|I1| = log2|I2| = {1, . . . , 8}
bits. ForDQCS-PQ, the codebooksH1 andH2 are generated
via the Huffman algorithm, and the average rates are defined
via (7). The weight parameter is set by a ruleµ , µc/log2|Il|,
whereµc is a non-negative constant. WhenE1, E2, andD are
optimized for multiple (ascending) values ofµc, the quantities
π2, C1, andC2 obtained for the preceding (smaller)µc are used
to initialize Algorithm 2 for the nextµc.

Two baseline QCS methods are considered, which, conform-
ing to the customary approaches, use fixed rateRl = log2|Il|,
and rely on a VQ encoder that minimize MSE quantization
distortion:

1) VQ-ES-DS: a method with separate NN encoding,
and separate decoding, where the VQ encoder oflth
sensor minimizes

∑

il∈Il
p(il)E

[

‖Yl − ŷl,il‖
2
2|Il = il

]

with encoder codepointŝyl,il ∈ R
M , and the de-

coder consists of the MSE-optimal decoder codevec-
tors cES-DS

l,il
= E[Xl|Il = il], il ∈ Il, for the associated

Voronoi regions,l = 1, 2.
2) VQ-ES-DJ: a method with separate encoding identical to

VQ-ES-DS, but with joint decoding via decoder codevec-
tors cES-DJ

l,i1,i2
= E[Xl|I1 = i1, I2 = i2], i1 ∈ I1, i2 ∈ I2,

l = 1, 2.

The distortion is measured as
Dave , 10log10

(

D1/E[‖X1‖22] +D2/E[‖X2‖22]
)

(dB), where

E[‖Xl‖22] =
∑

(

N
K

)

s=1 p(Ts)E
[

‖Xl,Ts
‖22
]

= K(σ2
Θ̄
+ σ2

Θ),
l = 1, 2. The rate is measured asRave , R/2 (bits). Due to
the exponential complexity of quantizer parts in the offline
training phase, the experiments are confined to moderate
quantization rates and signal dimensions. Data sets of size
5× 105 were used for training and performance evaluation.

B. An Illustrative Example

For visualizing the general operation ofDQCS-PQ, con-
sider a low-dimensional setup withN = 3, M = 2, K = 1,

10By the splitting procedure, a quantization system is first optimized
for codebook sizes|Il| = 2, l = 1, 2 (|Vl| for PQl). Then, each resultant
codevector is split through small perturbation, and the algorithm is run for
|Il| = 4 using the new codevectors as initial ones (i.e., "warm start"). This
gradual bifurcation is repeated until the desired codebook sizes are reached.
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Fig. 3. Illustration ofDQCS-PQ in terms of (a) pre-quantizerPQ1 and encoderE1, (b) pre-quantizerPQ2 and encoderE2, (c) reconstruction codebookC1,
(d) reconstruction codebookC2, and (e) message index mappingsπ1 andπ2. In (a) and (b), the black dots represent the codepointsgl,1, . . . , gl,32 of PQ1

andPQ2; each dotted line represents the sparsity-dependent spanφl,nXl,n, n = 1, 2, 3; each color indicates the setπ−1

l
(il) for message indexil ∈ Il,

l = 1, 2 (the colors are equivalent in (e)). In (c) and (d), the dots represent the codevectorscl,1,1, . . . , cl,8,8; the coordinate axes are shown as dashed lines.

σ2
W = 0.003, ρcorr = 102, Gaussian measurement matrices

Φ1 =

[

0.8472 0.8044 −0.6982
0.5312 0.5941 −0.7159

]

,

Φ2 =

[

0.9966 −0.5589 −0.0016
0.0827 −0.8293 1.0000

]

,
(22)

and quantization parametersµc = 0.5, |Vl| = 32, and|Il| = 8.
The encoder/decoder sides optimized via Algorithms 1 and 2
are depicted in Fig. 3: (a) and (b) illustrate the outcomes of
pre-quantization ofY1 andY2, and the subsequent message
index mappingsπ1 andπ2, respectively; (c) and (d) depict the
reconstruction codebooksC1 andC2, respectively; (e) tabulates
π1 andπ2. The source codebooksH1 andH2 are presented
in Table I. To get a better understanding on the main assets
of DQCS-PQ, VQ-ES-DJ is similarly illustrated in Fig. 4.

Firstly, the resulting performance figures forDQCS-PQ are
Dave = −10.19 dB andRave = 1.83 bits, andDave = −4.475
dB andRave = 3 bits for VQ-ES-DJ. This implies a striking
39 % reduction of rate, and5.7 dB decrease of distortion in
favor of DQCS-PQ.

The key function ofPQ1 andPQ2, "encoder shaping", can
be perceived from Fig. 3(a) and (b). Take as examples the mes-
sage indexI1 = 2 andI2 = 7: the 5 cells assigned toI1 = 2,
i.e., π−1

1 (2) = {5, 6, 7, 8, 10}, form an irregularly shaped re-
gion of measurement vectors, whereas the region forI2 = 7
consists of2 discontinuous cells11 by π−1

2 (7) = {25, 32}. This
shaping feature allows to merge the cellsSl,1, . . . ,Sl,32 (i.e.,
classify measurement (training) vectors) into message indices

11This can be interpreted as an index reuse, characteristic to a distributed
quantization setup [88].
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Fig. 4. Illustration ofVQ-ES-DJ in terms of (a) encoder at sensor1, (b) encoder at sensor2, (c) decoder codevectors forX1, and (d) decoder codevectors
for X2. The lines, dots, and colors have the meanings equivalent to those in Fig. 3.

TABLE I
HUFFMAN SOURCE CODEBOOKSH1 AND H2 OFDQCS-PQ USED IN

SECTION IV-B

I1/I2 CodebookH1 CodebookH2

1 1 0 0 1 0 –
2 1 0 1 1 0 1
3 1 0 0 0 0 –
4 0 0
5 1 1 1 1
6 1 0 0 1 1 –
7 – 1 0 0 1
8 1 0 0 0 1 1 0 0 0

Il = {1, . . . , 8}, l = 1, 2, by taking the collective effect of the
CS and DSC into account. As a consequence, the partitioning
in Fig. 3(a) follows to some extent the sparsity-dependent
linear projectionsφl,nXl,n +Wl, whereφl,n ∈ R

M is nth
column ofΦl, andXl,n is nth element ofXl, n = 1, 2, 3. Sim-
ilarly, Fig. 3(c) and (d) present that nearly all reconstruction
codevectors are (approximately)K-sparse vectors. As they are
also rather evenly distributed inR3, the codebooksC1 and
C2 presumably contain accurate estimates for theK-sparse

sourcesX1 andX2. On the contrary, the encoder regions of
VQ-ES-DJ in Fig. 4(a) are solely based on the probability
mass ofY1, and the codevectors in Fig. 4(c) and (d) are
dispersed with noK-sparse structure. Such incognizance of
the CS resulted in poor performance.

Table I illustrates the power of entropy coding in
DQCS-PQ: the codebooksH1 and H2 contain only7 and
5 codewords (instead of8), respectively, and the expected
codeword length is minimized by assigning the most frequent
indices I1 = I2 = 4 the shortest codewords”0”, the second
most frequent indicesI1 = I2 = 5 the codewords”1 1”, and
so forth. Note that even thoughH1 contains5-bit codewords,
Rave for DQCS-PQ is 39 % lower (andDave 5.7 dB lower)
than forVQ-ES-DJ that uses fixed-length3-bit codewords.

C. Distortion-Rate Performance

Fig. 5(a) depicts the average distortionDave versus the
average rateRave for N = 20, M = 8, K = 2, σ2

W = 0.01,
ρcorr = 103, and the Gaussian typeΦ1 and Φ2. By com-
pletely disregarding the signal correlation,VQ-ES-DS per-
forms poorly. Significant gains are achieved byVQ-ES-DJ
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Fig. 5. Average distortion vs. average rate forN = 20, M = 8, K = 2, the
Gaussian typeΦ1 andΦ2, and signal correlation parameter (a)ρcorr = 103 ,
(b) ρcorr = 102, and (c)ρcorr = 101 . The colors and markers of the curves
in (b) and (c) are equivalent to those in (a).

for which the joint decoding effectively expands the code-
book size from|Il| to |Il|2 (especially for high correlation).
However, since the encoders of both methods are blind to the
peculiarities of the CS, and they use fixed rates, the proposed
variable-rate CS-awareDQCS-PQ invariably obtains the best
compression performance for all values ofµc, including the
fixed-rate version (µc = 0). Similar performance trend carries
over all the subsequent experiments as well.

It can be seen thatVQ-ES-DS saturates around the
distortionDave = −5 dB. Such an unavoidable constant error
level is caused by the remote source coding setup in CS,
and, thus, also occurs for the other methods for sufficiently
high rates. Namely, regardless of the compression/coding
method, the CS parts with additive measurement noise
at the sensors prevent the perfect reconstruction ofX1

and X2 at the decoder, even for the rates approaching
infinity. For VQ-ES-DS, the error level is defined by
the rate-independent MMSE estimation error of the

form
∑2

l=1

∫

yl

E

[

‖Xl − E[Xl|Yl = yl]‖
2
2

]

f(yl)dyl.

For VQ-ES-DJ and DQCS-PQ, the level is given

by
∑2

l=1

∫

y1

∫

y2

E

[

‖Xl − E[Xl|Y1 = y1,Y2 = y2]‖
2
2

]

f(y1,y2)dy1dy2.

D. Influence of Weight Parameterµ

The impact of weight parameterµ in DQCS-PQ can be
perceived from Fig. 5(a). By choosing an appropriate variable-
rate code,DQCS-PQ can flexibly trade-off the distortion-
rate performance, and thus, lends itself to varying compres-
sion scenarios. For instance, consider a rate-limited WSN
application, where the maximum (source) rate is restricted
to, say,Rave = 5 bits due to, e.g., bad channel conditions,
or congested data traffic. Via entropy coding of the message
indices, the reconstruction performance is improved from
Dave = −5.8 dB (µc = 0) to Dave = −7.6 dB (µc = 0.75).
Alternatively, consider an application with minimum required
reconstruction fidelity of, say,Dave = −7 dB. With the aid of
variable-length coding, a significant rate reduction of1.5 bits
from Rave = 6.0 bits (µc = 0) to Rave = 4.5 bits (µc = 0.75)
is achieved.

E. Influence of Source Correlation

Fig. 5(a) – (c) show the compression performance for differ-
ent signal correlation levelsρcorr = {103, 102, 101}. As a first
remark,DQCS-PQ utilizes the signal correlation efficiently
for compressing the sparse sources. The higher the correlation,
the greater the compression gain is in favor ofDQCS-PQ.
For ρcorr = 103 (high correlation), the distortionDave = −7
dB is achieved at ratesRave = 6.7 bits for VQ-ES-DJ, and
4.5 bits for DQCS-PQ (µc = 0.75). For ρcorr = 101 (low
correlation), the respective rates areRave = 7.4 and6.0 bits.
Note that whereasVQ-ES-DJ andDQCS-PQ perform better
with the increasing correlation, the indiscernible disparities of
the curves of fully separateVQ-ES-DS are solely attributed
to different signal powersE[‖Xl‖22].
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Fig. 6. Average distortion vs. average rate forN = 10, K = 1, ρcorr = 102 ,
the DCT typeΦ1 andΦ2, and number of CS measurements (a)M = 2, (b)
M = 3, and (c)M = 4. The colors and markers of the curves in (a) and (b)
are equivalent to those in (c).

F. Influence of Number of Measurements

Fig. 6 demonstrates the influence of different number of
CS measurementsM = {2, 3, 4} in the setup withN = 10,
K = 1, σ2

W = 0.01, ρcorr = 102, and the DCT typeΦ1 and
Φ2. Unlike the other methods,DQCS-PQ achieves decent
performance even in a very noisy scenario (i.e., forM = 2).
By increasing the measurements toM = 3, and further to
M = 4, the setup becomes less contaminated which allows
each QCS method to compress the sparse sources more
reliably. However, whereasVQ-ES-DS andVQ-ES-DJ obtain
considerable gain when switching fromM = 3 to M = 4,
the respective improvement forDQCS-PQ is negligible. This
is congruent with the CS philosophy: whenM is sufficient
for successful support recovery, a further increase ofM does
not provide significant gains. Accordingly, given thatM is at
a satisfactory level, it is more cost-effective to improve the
reconstruction quality by increasing the rate. Since acquiring
more measurements can be expensive – or even infeasible – in
practice, the capability to operate at low signal-to-noise ratios
is indisputably an advantageous feature ofDQCS-PQ.

V. CONCLUSIONS ANDFUTURE WORK

A distortion-rate optimized variable-rate distributed QCS
method was developed for efficient and complexity-
constrained acquisition of correlated sparse sources in WSNs.
The proposed DSC method minimizes a weighted sum of
the average MSE signal reconstruction distortion, and the
average rate. As a specific target to ameliorate the practi-
cal feasibility, the encoding complexity of each sensor is
restrained by pre-discretizing the measurement vector space
via VQ. Following the entropy-constrained design, the method
incorporates a desired variable-rate code by means of rate
measures of an entropy bound to enhance the compression
performance. Alternating optimization was used to derive
necessary optimality conditions and propose practical training
algorithms for a two-sensor system. The complexity aspects
of training and communication phases were discussed. Based
on the numerical results, the proposed method has superior
distortion-rate performance under varying signal correlation
levels and signal-to-noise ratios. Moreover, the method is
adaptable to distinct compression settings with, e.g., stringent
rate or distortion requirements. As the key finding, efficient
finite-rate acquisition of correlated sparse sources calls for 1)
CS-awareness, 2) DSC design, and 3) entropy coding.

While VQ for pre-quantization is justifiable owing to the
coding optimality [89, Sect. 3.4], its applicability is limited
to moderate signal dimensions/quantization rates. As this is
the first work on distortion-rate optimized QCS, sub-optimal
quantization methods necessary for high-dimensional setups
(see Section III-D) were left for future studies. Potential
extensions to enhance the compression performance include
DSC of message indices (see Remark 5), and designing the
pre-quantizers jointly with the encoders and decoder. While
JSM-2 inspired by timely WSN applications like collaborative
spectrum sensing is used as the signal model, other signal
types including JSM-1 and JSM-3 in [49], [54], and common
sparse signals in [77]–[79] are straightforwardly applicable.
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However, by restricting to JSM-2 signals, the conducted ex-
periments provide distinct insights and benchmarks for future
studies – both for experimental and theoretical ones. In fact,
as the signal characteristics were not explicitly used in the
derivations, the generality extends beyond sparse signals and
CS-based sensors, i.e., the proposed design can be applied for
a general distributed joint estimation and compression scheme.

As the design adheres solely to source coding, reliable com-
munications of encoder outputs in a practical noisy channel
setup necessitates channel coding. For a mere concatenation
of the devised source encoders and channel encoders, a known
downside is the catastrophic effect of channel errors [96]: a
few erroneously received bits of a variable-length code induce
error propagation. On the theoretical side, while separate
source and channel coding is asymptotically optimal in a point-
to-point setup owing to the celebrated Shannon’s separation
theorem [3, Theorem 21], the result does not hold in general
multi-user networks [97, Sect. 1.4.4]. Accordingly, a viable
solution may be obtained via distributed joint source-channel
coding [96], [98]–[100].
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