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Abstract—Modern cloud and data center platforms suffer
failures and performance degradation from large traffic surges
caused by both external (e.g., DDoS attacks) or internal (e.g.,
workload changes, operator errors, routing misconfigurations)
factors. If not mitigated, traffic overload could have significant
financial and availability implications for cloud providers. In this
paper, we propose NetFuse, a mechanism to protect against traffic
overload in OpenFlow-based data center networks. NetFuse is
(1) scalable because it uses passively-collected OpenFlow control
messages to detect active network flows; (2) accurate because
it uses multi-dimensional flow aggregation to determine the
right criteria to combine network flows that lead to overloading
behavior; and (3) effective in limiting the damage of surges while
not affecting the normal traffic because it uses a toxin-antitoxin-
like mechanism to adaptively shape the rate of the flow based on
application feedback. Experimental results on a real OpenFlow
testbed show that NetFuse is effective in identifying and isolating
misbehaving traffic with a small false positive rate (< 9%).

I. INTRODUCTION

Modern cloud and data center platforms comprise thousands

of servers running complex applications.Although constructed

with redundant network topologies [1] and well-engineered

protocols [2], these platforms still suffer catastrophic failures

and performance degradation when traffic overload occurs.

Traffic overload is caused by external factors, such as DDoS

attacks, but also by seemingly harmless internal factors, such

as small workload changes, simple operator tasks, or routing

misconfigurations. For example, Amazon EC2 was down in

April 2011 due to a routing misconfiguration that mistakenly

rerouted high-volume external traffic into the low-capacity

internal network [3].

There is a large amount of research on identifying and

mitigating network problems caused by an overabundance

of traffic, falling into two categories: proactive and reactive.

Proactive solutions propose to modify the data center archi-

tecture, protocols, resource placement, or applications to limit

the occurrence of failures [4], [2], [5], [6], [7], [8]. However,

they cannot easily cope with overloading behavior caused by

unpredictable interactions between applications or with the

infrastructure, as manifested in the Amazon incident. Reactive

solutions focus on how to quickly detect faults after they

occur [9], [10]. These approaches must constantly monitor

network traffic and application behavior and may not scale

when the price to gather measurements is high.

In this paper, we explore a mechanism that exploits the

capabilities of OpenFlow switches [11] to prevent data cen-

ter network overloading problems. OpenFlow is increasingly

deployed in data centers to support diverse performance- or

reliability-based application requirements [12]. In OpenFlow

networks, switches connect to a logically centralized controller

and notify it, using control messages, when new flows arrive

or expire.

We propose NetFuse, a mechanism to protect against cas-

cading network overloading with little measurement overhead.

NetFuse sits between the switches and controller of an Open-

Flow network and guards the network against the effects of

traffic overload, similarly to how fuse boxes protect electrical

circuits from surges. NetFuse leverages OpenFlow’s capabili-

ties to achieve lightweight network-wide overload detection

and reaction, in three steps: (1) It uses OpenFlow control

messages (e.g., PacketIn, FlowMod, FlowRemoved) to de-

tect the set of active network flows. Relying on control traffic,

which notifies the controller of network events, such as flow

departures and arrivals, eliminates the need for on-demand,

expensive monitoring. (2) To detect overloading behavior, we

employ a multi-dimensional flow aggregation algorithm that

automatically determines an optimal set of clustering for the

active flows (e.g., based on VLAN, application, path, rate)

and identifies suspicious flows for each criteria. (3) Finally,

NetFuse limits the effect of these flows by adaptively changing

their rate using a toxin-antitoxin mechanism.

We implement NetFuse and deploy it in a real OpenFlow

network as a proxy between the switches and the controller.

Preliminary experiments show that NetFuse detects network

overloading caused by routing misconfigurations or DDos

attacks with small false positive rates (less than 9%).

II. FLOW AGGREGATION

The first goal of NetFuse is to identify the flows with

suspicious behavior. The definition of “suspicious” varies

according to different contexts. For example, both excessively

frequent DNS queries and extremely high traffic volume

represent suspicious behavior. In practice, network operators

need to specify overloading behaviors based on the operational

experience and domain knowledge. Because no single flow

may be suspicious, NetFuse performs flow aggregation to

identify clusters of active flows with overloading behavior.

A. Current Practice: Single-Dimensional Aggregation

General problem We formulate the general flow aggrega-

tion problem. The input is a set of n flows: {f1, f2, ..., fn}.

Each valid flow aggregation can be modeled as a set partition

P (e.g., P = {F1 = {f1, f3, f5}, F2 = {f2, fn}, . . . , Fk}). Our

goal is to find the aggregations that exhibit overloading.

To capture the overloading behavior of an aggrega-

tion, we define its overloading score S(P ) as (max{F} −

m−{F})/m−{F}, where max is the maximum rate across all

aggregated flows in the aggregation and m− is the low me-

dian. Different aggregations have different scores, as in some

1



aggregations the overloading behavior shows more evidently

than others. For example, in Figure 1, aggregation P1 has a

higher score than P2 due to the sharpness of its peaks. The

aggregation that best reveals overloading behavior is given by

P ∗ = maxP S(P ).

w
 r

a
te

w
 r

a
te

P
1

P
2

Aggregation index F
i

F
lo

w

Aggregation index F
i

F
lo

w

Fig. 1. Example of different flow aggregations.

Flow aggregation is a combinatorial optimization problem

and NP-hard. Machine learning based clustering algorithms

may be applied, but they require heavy training data and

complex computation, making it unsuitable for online problem

detection. In fact, it may not even be necessary to solve this

general flow aggregation problem, because an arbitrary flow

clustering may not be mapped to a practical overloading reason

and thus a practical solution cannot be found. Even worse,

it is also possible that a group of perfectly legitimate flows

are labeled problematic only because they collectively show

certain statistical overloading behavior.

Aggregation condition Example overloading reason

P1 ingress and egress end-to-end flooding

P2 source subnet compromised VMs

P3 destination subnet flash crowd to specific VMs

P4 destination port attack against specific services

P5 routing routing misconfiguration

P6 start time range correlated data transfers

P7 frequency threshold new traffic load

P8 duration threshold short/failed connection attempts

P9 burstiness threshold buggy customized TCP

TABLE I
EXAMPLE REASONABLE FLOW AGGREGATIONS.

Reasonable aggregations Instead of traversing arbitrary

flow aggregations, we design NetFuse to enumerate a list of

reasonable aggregations and find the one that best explains the

observed overloading phenomenon. A reasonable aggregation

corresponds to one or more practical overloading reasons.

Table I exemplifies a list of reasonable flow aggregations

and the corresponding overloading reasons. For example, P4

aggregates the flows with the same destination port number

together. If the overloading is caused by attacks against HTTP,

the aggregated flow with “dPort = 80” takes significantly

more resource than other flows. If NetFuse identifies this

flow aggregation, any HTTP request traffic (including the

upcoming ones) will be controlled, and the other applications

in the network will be protected. Note that this list of rules

includes both spatial (P1 to P6) and temporal (P7 to P9) flow

properties, and we can easily obtain the required information

in OpenFlow (more on this in Section IV). However, it by no

Algorithm 1: maxAgg(π)

π∗ = {P |P ∈ π, S(P ) > th};1

while |π∗| > 1 do2

select P from π∗, foreach P ′ ∈ π∗ do3

if not (P ≤ P ′ or P ′ ≤ P ) then4

P ′′ = PP ′;5

if P ′′ /∈ π∗ and S(P ′′) > S(P ) and6

S(P ′′) > S(P ′) then

π∗ ← π∗ ∪ P ′′;7

if max{S(P )|P ∈ π∗} > S(P ) then8

π∗ ← π∗ − {P};9

if π∗ == ∅ then10

P ∗ ← flows;11

else12

P ∗ ← the only aggregation in π∗
13

means covers all possible aggregation conditions and can be

customized by the operators based on the domain knowledge.

Threshold-based aggregation Some reasonable aggrega-

tion rules may be based on a predefined threshold, e.g., P7,

P8, and P9. Using P8 from Table I as an example, if we

want to partition flows by duration df , we need to set the

threshold value dth, and aggregate the flows with shorter

duration (df < dth) into the “short-lived” aggregation and

the other flows into the “long-lived”. We find an appropriate

threshold by choosing the value that separates the aggregated

flows by the largest distances. The distance definition can

be determined given the historical measurement statistics

during normal (and heavy-load) operations. For example, if

the flow duration follows a power law distribution, we define

the distance between threshold dth and aggregated flows

F as: minf∈F (log(dth)− log(df )). Then we sort the flows

in F by log(df ), find i∗ = argmaxi (log fi+1 − log fi), and

set exp ((log fi∗+1 + log fi∗)/2) as the threshold. For different

flow properties, we use different techniques (e.g., clustering

algorithms) to determine the threshold for the aggregation

condition.

B. NetFuse Approach: Multi-Dimensional Aggregation

In Table I, each aggregation is based on a single flow

property. In practice, the overloading can be caused by specific

applications at specific network regions, corresponding to a

combination of multiple aggregation conditions on different

flow properties. For example, if the overloading is caused by

concurrent attacks against a database, then the corresponding

aggregation may be “start time < 30 seconds” and “dPort =
1433”. If we aggregate the flows by either start time or dPort,

we cannot identify the right set of flows. Thus, a key problem

is how to find the correct rule combination.

We develop a breadth-first search algorithm with branch

pruning to enumerate the multi-dimensional flow aggrega-

tions (Algorithm 1). The input of the algorithm is π =
{P1, P2, P3, ...}, which includes the list of reasonable ag-

gregations to be tried out. As an example, suppose P1 =



{{f1, f2}, {f3}} is a flow aggregation based on start time,

in which f1, f2 are “old” flows and f3 is a “new” flow;

P2 = {{f1}, {f2, f3}} is another flow aggregation based on

dPort, in which f1 is a flow to port 22 and f2, f3 are flows

to port 80. The algorithm generates a new aggregation P3 by

combining P1 and P2 together: P3 = {{f1}, {f2}, {f3}}, in

which f1 is an old flow to port 22, f2 is an old flow to port

80, and f3 is a new flow to port 80. If such a new aggregation

P3 has higher score S(P3) than P1 and P2, then the algorithm

considers P3 better and keeps it in π. The algorithm continues

to combine partitions to find the best flow aggregation. Note

the “≤” operation represents the refinement relation between

two set partitions. The algorithm does not combine the two

aggregations if one is a refinement of the other.

The computational complexity of Algorithm 1 is O(NKm),
where N is the number of active flows, K is the number of

pre-determined aggregation rules, and m is the dimension of

the optimal aggregation. In practice, the algorithm can finish in

under 1s, which is sufficiently responsive for online detection

and reaction. NetFuse applies this algorithm to find the best

reasonable flow aggregation and the corresponding most likely

overloading reason. If no aggregation shows overloading,

the output of the algorithm may be just the flows without

aggregation (this can also be viewed as the finest aggregation).

Otherwise, the output of the algorithm may be either single-

or multi-dimensional flow aggregation rule(s). NetFuse will

classify all flows falling into the aggregation as overloading.

III. ADAPTIVE CONTROL

A. Basic Control

Once NetFuse finds the suspicious flows, it must control

them to mitigate the overloading problems. For each identified

overloading flow, NetFuse instructs the associated switches to

reroute the flows to the NetFuse box. Rerouting, different from

mirroring, frees the network resource originally occupied by

the overloading flows. Then, NetFuse can delay or selectively

drop packets of the redirected flows to reduce their rates. In

Section IV, we discuss how to realize this functionality in an

OpenFlow network.

B. Toxin-Antitoxin Mechanism

The identified suspicious flows should not be treated

equally. Due to potential false alarms, not all suspicious flows

may be misbehaving. Even if abnormal flows are correctly

found, different flows may have different impacts on the

aggregate overloading behavior. In addition, traffic interde-

pendencies may exist within the identified flows or between

them and the other normal flows. Therefore, NetFuse should

regulate the identified flows differently and adapt the reaction

according to the system feedback.

We introduce an adaptive control mechanism, inspired by

toxin-antitoxin biological systems. During the cell division,

reproducible poison and a limited amount of antidote are

both released; the ill-behaved child cells kill themselves by

aggressive reproduction (together with the poison), while the

well-behaved child cells control themselves and survive with

the sufficient antidote. A similar mechanism was used by

Mahajan et al. [13] to control high bandwidth aggregate flows

in the Internet.

NetFuse applies the toxin-antitoxin mechanism in its control

actions as follows. When it delays an overloading flow f ,

NetFuse tests the aggressiveness of f ’s response. If f reduces

its rate, NetFuse also reduces the aggressiveness of the delay

until it no longer delays f . Otherwise, NetFuse starts delaying

f more aggressively until it eventually fills the buffer, dropping

all packets of f . In particular, for NetFuse control, if the

target rate of f is r (e.g., the average rate of other normal

flows), and f ’s current rate demand (measured at NetFuse

box buffer queue) is rf , the extra delay NetFuse puts on f

is: (rf − r) × rf × RTT/r. Assuming the flows employ TCP

and thus the flow rate is inversely proportional to RTT, since

rf ∝ RTT , the extra delay on f intends to reduce flow rate

from rf to r. In practice, well-behaving flows respond to the

extra delay by lowering the rate to or under r. Misbehaving

flows may continue at the higher rate, and NetFuse will

continue delaying and potentially dropping their packets.

IV. NETFUSE DESIGN

We implement NetFuse as a proxy device between the

OpenFlow switches and the controller. Next, we describe how

NetFuse monitors and controls network flows.

Monitoring NetFuse employs both passive listening and

active query to collect necessary network information. As an

intermediate relay, NetFuse intercepts all the control messages

between the switches and controller, thereby obtaining a global

view of the network.

Each switch sends a PacketIn message to the controller

every time it receives a data packet that does not match any of

its flow table entries. The controller replies with an FlowMod

message to install a forwarding rule for the packet and the

subsequent packets in the same flow. Both PacketIn and

FlowMod messages encode key flow information: identifier

(e.g., source IP and port, destination IP and port), routing

configuration (e.g., VLAN tag, ingress interface, egress in-

terface), and the flow start time. When the flow entry expires

(triggered by a configurable timer encoded in the FlowMod),

the switch sends to the controller a FlowRemoved message,

which includes the expired flow’s duration and volume. All

these control messages are embedded in the normal operation

of OpenFlow networks and thus can be efficiently utilized by

NetFuse with little additional overhead.

In addition to passively listening to the control messages,

NetFuse can also use the OpenFlow ReadState messages to

periodically query the switches for network resource utiliza-

tion and fine-grained flow information. The network utilization

information includes the interface load and queue size. Net-

Fuse also actively queries fine-grained information about the

long-lived elephant flows, in particular the dynamic flow rates

between the flow start time and the expire time. Inevitably,

these active queries introduce overhead to the data path. To

mitigate this problem, NetFuse sets the query frequency to be

in proportion to the current network load. In addition, NetFuse



conducts more active queries only for suspected flows and in

suspected network regions.

Detection and action Given the set of flows derived

from control traffic monitoring, NetFuse applies the flow

aggregation algorithm to identify the flows with overloading

behavior. During normal operation, all the flow reports from

the switches are relayed to the controller. In overloading

situations, especially when the control network is heavily

loaded, NetFuse filters and prioritizes the flow reports to

offload to the controller. The control commands from the

controller also go through NetFuse before getting installed in

switches. When it detects network problems and identifies the

responsible flows, NetFuse performs adaptive control on the

identified flows by modifying or issuing new flow control rules

to the switches. In cases where the deep packet inspection is

required or when extra delays need to be injected into certain

flows (as described in Section III-A), the identified flows are

redirected to the NetFuse boxes for further processing.

The NetFuse boxes work as transparent devices between

the controller and switches. From the perspective of switches,

these devices act as the controller and issue actual commands

to the switches to perform certain tasks. From the perspective

of the controller, they are the network. Additionally, the

NetFuse proxies also relieve the controller from heavy tasks

such as flow redirection, delay injection, and packet blocking,

thereby improve the scalability of the entire system.

V. PRELIMINARY EXPERIMENTS

We built a prototype for NetFuse and deployed it our

OpenFlow-enabled data center testbed. The testbed consists of

10 switches in a FatTree topology. We generate 500 random

flows over 100 time slots and apply the flow aggregation

algorithm at each time slot. We configured a few reasonable

aggregation rules (as in Table I) for bootstrap, and we applied

the simple algorithm in Section II to determine the threshold

for each corresponding rule. When a link is overutilized,

NetFuse identifies the overloading flows based on the best flow

aggregation rule. We create multiple test cases with specific

overloading flows and examine whether NetFuse can correctly

detect the overloading behavior.

Expt 1: single compromised flow We start with the

simplest case, in which we pick up one normal flow, and

suddenly increase its rate at some time slot. Figure 2(a) shows

that the suspicious flow uses more resources than the other

flows and can be easily identified, even without aggregation.

Expt 2: DDoS attack We simulate a DDoS attack by

injecting flows from different switches to an edge switch.

Figure 2(b) shows the identified overloading aggregated flow

obtained from combing the rules “frequency < 4” and “start

time < 30 seconds”. This aggregated flow includes all the

DDoS attack flows but also mis-identifies normal flows that

start at the same time as the attack. The rate of false alarm is

9%. The adaptive NetFuse reaction will eventually block the

real bad attacking traffic and let the normal flows pass.

Expt 3: routing misconfiguration We introduce a routing

misconfiguration and let around 50 new flows routed from a

core switch A to an aggregation switch B and eventually to

an edge switch C. Although none of the new flows has very

high rate, the total load of all the rerouted traffic can overload

some network links. Figure 2(c) shows the sampled network

utilization, in which the core-to-aggregation link is overloaded.

Given the rate of each flow (Figure 2(d)), NetFuse needs

to identify the new flows that are causing the overload. Let’s

consider first the flows that go through the overloaded core-

to-aggregation link (Figure 2(e)) without any aggregation. It is

very difficult to identify which flows are having overloading

behavior. Once we perform aggregation on these flows by

combining frequency and routing as aggregation rules, the

detection becomes much easier. Figure 2(f)) shows the rate

increase for flows aggregated by combining the criteria “fre-

quency < 4” and “routing from switch A to switch B to switch

C,” which correspond to the rerouted new traffic.

VI. DISCUSSION AND RELATED WORK

Monitoring NetFuse shares a similar philosophy with the

recent work of Jose et al. [14] and of Al-Fares et al. [15].

Both works actively read switch counters unlike NetFuse

which relies largely on passive measurements and uses active

querying only when control traffic is insufficient. In addition,

Jose et al. focus exclusively on detection, unlike NetFuse who

attempts to also limit the effects of surges.

Flow aggregation We use multi-dimensional aggregation to

find the problematic flows. This is similar to the hierarchical

heavy hitter (HHH) problems [16], [17] in traditional IP net-

works. However, the proposed algorithms may not be directly

applied to data center networks since the natural IP address

hierarchy may not always exist, especially in such topologies

with decoupled physical and logical addressing schemes such

as VL2 [1] and Portland [18]. Even if the spatial properties

of the flow can be hierarchically aggregated, the temporal

properties of the flow still do not fit in the HHH algorithms.

Scalability Two mechanisms help scale NetFuse: network

statistics inference based on the OpenFlow control messages

and controller offloading using the NetFuse middlebox. The

presence of a large number of flows triggers many control

packets and can overwhelm NetFuse. Previous measurements

show that having a large number of flows is feasible for

medium-sized OpenFlow networks with a powerful controller

or a collection of controllers. For example, controllers in

networks of 100 switches, with new flows arriving every 10µs,

may have to process up to 10 million PacketIn messages per

second [19]. Even if the controller were distributed, NetFuse

could still capture control traffic and synchronize network

information using a mechanism similar to FlowVisor [20].

Deployment In practice, fully reactive OpenFlow networks

are rare. A more realistic deployment setting for NetFuse is

a hybrid network where not all switches trigger control traffic

(because they are not OpenFlow enabled or because they have

rules pre-installed). In such environments, the current NetFuse

monitoring mechanisms need to be coupled with SNMP-

based techniques and flow sampling mechanisms. Moreover,

in such hybrid environments, NetFuse will be deployed at a
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(a) Expt 1: NetFuse easily identifies single misbe-
having flow, without aggregation.
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(b) Expt 2: Multi-dimensional flow aggregation
reveals misbehaving aggregate flows (index 0) but
with few false positives (index 1).
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(e) Expt 3: NetFuse cannot easily identify the mis-
behaving flows when there is no flow aggregation.
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(f) Expt 3: With flow aggregation, NetFuse identi-
fies the aggregation responsible for overload.

Fig. 2. Experimental results.

few vantage points instead of ubiquitously in the network. In

such cases, NetFuse and other traditional network overload

protection approaches can be complementary to each other.

VII. CONCLUSION

We presented NetFuse to protect against network overload-

ing problems in OpenFlow data center networks. NetFuse uses

(1) passively-collected OpenFlow control traffic to identify

active network flows, (2) multi-dimensional flow aggregation

to find the flow clusters that are suspicious, and (3) a toxin-

antitoxin mechanism to adaptively limit the rate of suspicious

flows without severely affecting the false positives. We demon-

strated NetFuse in our lab OpenFlow testbed and showed that

it can detect DDoS attacks and routing misconfigurations.
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