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Abstract: Sampling has become an essential component of scalable Internet traffic monitoring and anomaly
detection. A new flow-based sampling technique that focuses on the selection of small flows, which are
usually the source of malicious traffic, is introduced and analysed. The proposed approach provides a flexible
framework for preferential flow sampling that can effectively balance the tradeoff between the volume of
the processed information and the anomaly detection accuracy. The performance evaluation of the impact of
selective flow-based sampling on the anomaly detection process is achieved through the adoption and
application of a sequential non-parametric change-point anomaly detection method on realistic data that
have been collected from a real operational university campus network. The corresponding numerical results
demonstrate that the proposed approach achieves to improve anomaly detection effectiveness and at the

same time reduces the number of selected flows.

1 Introduction

As the Internet continues to develop rapidly in size and
complexity, it has become increasingly clear that its
evolution is closely tied to a detailed understanding of
network traffic. Network traffic measurements are
invaluable for a wide range of tasks such as network
capacity planning, traffic engineering, fault diagnosis,
anomaly detection or detection of network security
violations [1, 2].

Because of the large number of flows on a high-
capacity link and the corresponding difficulty in
storing and processing all flow informations with a
limited amount of resources, sampling has attracted a
great deal of attention as a way to collect statistical
information about flows [3, 4]. Sampling is the
process of making partial observations of a system of
interest and drawing conclusions about the full
behaviour of the system from these limited
observations. The observation problem is concerned
with minimising information loss while reducing the
volume of collected data in order to make this process
feasible and scalable.

Among the fundamental issues regarding sampling is
its accuracy. This question is particularly pertinent in the
Internet environment, where its traffic is known to
fluctuate dynamically and unpredictably. Inaccurate
sampling can lead to wrong decisions by network
operators. Another important question closely related
to the accuracy issue is the efficiency of sampling:
how many packets do one need to process in order to
produce reliable results.

Most of the existing work on sampling has addressed
the inversion of general traffic properties such as flow
size distribution, average flow size or total number of
flows. Although these approaches are interesting for
general-purpose network management processes and
traffic characterisation, it is only recently that some
limited work has been done towards understanding
the impact of sampling on individual flow properties.
Towards this direction, intelligent sampling is required
to obtain a reliable estimate of detailed information
from only a subset of flow records. It exploits the fact
that for specific-purpose applications, a large fraction
of information is contained in a small fraction of
flows. By preferentially sampling flows, we can
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control the volume of statistics simultaneously by
controlling the variance of statistical estimates derived
from them.

Our research work is devoted to addressing the above
issues for anomaly detection purposes. Network
anomaly detection techniques [5—7] rely on the
analysis of network traffic and the characterisation of
the dynamic statistical properties of traffic normality,
in order to accurately and timely detect network
anomalies. Anomaly detection is based on the concept
that perturbations of normal behaviour suggest the
presence of anomalies, faults, attacks and so on. The

roblem of anomaly detection becomes more complex
and challenging when network traffic data are sampled.

The main objective of this work is to design, develop
and analyse sound and efficient flow-sampling techniques
that have practical application in anomaly detection. To
achieve this, based on experiences regarding the sources
of the majority of attacks, we identify key elements that
affect the accuracy of flow sampling and use
mathematical models and statistical characteristics
regarding the corresponding parameters of interest.
Among the main contributions of this paper is the
introduction of a new flow-based sampling technique
that focuses on the selection of small flows, which are
usually the source of malicious traffic [8, 9]. In order
to evaluate the impact of the proposed flow-based
sampling technique on anomaly detection
effectiveness, an algorithm that exploits a commonly
used sequential non-parametric change-point detection
(CPD) method is adopted and utilised. It should be
noted that our performance evaluation study is based
on realistic data that have been collected from a real
operational university campus network, which consists
of more than 4000 hosts.

The remaining of this paper is organised as follows. In
Section 2, we present some related research work and
some observations that motivated our work. In
Section 3, the proposed selective flow-sampling
approach is described and analysed first, and then its
application over a commonly used sequential non-
parametric change-point anomaly detection method is
presented. A detailed evaluation of the impact of the
proposed selective flow-sampling approach on the
overall performance of the anomaly detection process
using real network traces is included in Section 4 and
Section 5 concludes the paper.

2 Related work

The deployment of sampling techniques aims at the
provisioning  of information about a  specific
characteristic of the parent population at a lower cost
than a full census would demand. The sampling
techniques can be divided into two major categories:

packet-based and flow-based samplings. In packet-
based sampling, packets are selected wusing a
deterministic or non-deterministic method. In flow-
based sampling, packets are first classified into flows.
A flow is defined as a set of packets that have in
common the following packet header fields: source IP
address, source port, destination IP address,
destination port and protocol. In this case, sampling is
performed in flows, which results in the selection of
all packets that consists of a particular flow.

Application of packet sampling on network traffic
measurements has been extensively studied in the
literature [3, 10], mainly for traffic analysis, planning
and management purposes. Researchers have proposed
schemes that follow an adaptive packet sampling
approach in order to achieve more accurate
measurements of network traffic. Specifically, an
adaptive packet sampling technique for flow-level
traffic measurement with stratification approach,
which provides unbiased estimation of flow size (in
terms of packet and byte counts) for large flows, has
been proposed in [11]. In [12], an adaptive packet-
level sampling method on different traffic fluctuations
and burst scales has been introduced. The method can
dynamically adjust each packet sampling probability
dependent on the magnitude of traffic fluctuation and
can achieve better sampling accuracy contrary to static
random sampling.

Furthermore, Hohn and Veitch [4] compared packet
sampling with flow sampling and showed that flow
sampling  performs  better in  recovering flow
distributions, whereas in [13] smart sampling for
selecting large flows over small ones has been proposed.
However, all these studies and evaluation are targeted
towards effective network traffic accounting and are not
appropriate for anomaly detection.

The specific problem of studying and understanding
the impact of sampling on the anomaly detection
process is quite different and far more complicated
than the corresponding ones regarding other network
management processes. This is mainly due to the fact
that anomaly detection may operate under abnormal
conditions / attacks, while by its nature involves
simultaneously several factors, such as normal traffic,
abnormal traffic and various detection metrics, whose
statistical characteristics and behaviour may be affected
in quite diverse ways by the sampling process.

Recently, researchers started to focus on the impact
of sampling on anomaly detection. Mai et al. [14],
evaluated the impact of packet sampling on three

portscan  detection  algorithms.  Their  results
demonstrated  that packet sampling introduces
fundamental ~bias that degrades the detection

effectiveness of these algorithms and dramatically
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increases false positives. This work was extended in [15]
to compare the impact of random packet sampling,
random flow sampling, smart sampling [13] and
sample-and-hold [16] on specific anomaly detection
techniques. The corresponding results demonstrated
that random flow sampling performs best, whereas
smart sampling and sample-and-hold are not suitable
for anomaly detection. Moreover, Brauckhoff et al.
[17] studied the impact of random packet sampling on
the blaster worm anomaly and showed that entropy-
based metrics are less affected by sampling than
volume-based metrics.

In our previous work [18], we evaluated the impact of
three packet-sampling techniques (systematic, random
n-out-of-N  and  uniform  probabilistic  random
sampling) that have been proposed in the PSAMP
IETF draft [19] on three widely used anomaly
detection algorithms. Our results revealed that
systematic sampling does not perform well under low
sampling rates when the detection of the attack
depends on certain packet characteristics (e.g. TCP
ags). Furthermore, we showed that when flow-based
metrics such as the number of source IP addresses
or number of flows are used, the performance of
the anomaly detection algorithm relies mainly on the
sampling rate applied and is less dependent on the
sampling technique used.

3 Selective sampling for anomaly
detection

3.1 Selective sampling

Motivated by the concept of smart sampling [13] where
flows are sampled with probability proportional to their
size, a new flow-sampling approach — in the following,
we refer to as selective sampling — that focuses on the
selection of small flows instead is introduced. It should
be emphasised that small flows are usually the source of
many network attacks [distributed denial of service
(DDoS), portscans, worm propagation] [8, 9] and
have to be selected in order to maintain an efficient
anomaly detection process.

According to the proposed scheme, the selection of
an individual flow is based on the following expression

c
P(X>_{z/(n-x) x>z 1)
where x is the flow size in packets, 0 < c¢<1,n>1
and z a threshold (measured in packets). As we can
observe from (1), flows that are smaller than z are
sampled with a constant probability ¢, whereas flows
that are larger in size than z are sampled with
probability inversely proportional to their size. One
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of the main characteristics of our new sampling
scheme is that it is more adaptive compared with
other approaches (e.g. smart sampling) because it can
further control and reduce the number of
selected flows. With the appropriate value for
parameter ¢, a significant proportion of small flows
can be selected without decreasing the anomaly
detection effectiveness. On the other hand, the
selection of large flows can be further reduced by
increasing the value of parameter n. For large
values of n, flows with an enormous number of
packets are expected to be missed in the selection
process. This fact is very important because we
reduce significantly the quantity of sampled packets
that need to be processed by the anomaly detection
algorithm.

More specifically, let the random variable x represent
the flow size in packets and denote by £(x) its
probability mass function (pmf). The number of
selected flows Ny will be given by the following
expression

N
Ny = ZP(X) RACIRRY
x=1

where S¢ is the total number of flows and N the
maximum flow size.

Using (1), the above expression becomes

z

N
Ne= D el S+ Zi%(x)-sf

x=1 x=z+1

The number of selected packets N, will be given by the
following expression

N
N, =Y p() - ) x-S
x=1

Using (1), we obtain

z

Ny=) el xS+ zji-ﬁ(x)-sf )

x=1 x=z+1

3.2 Anomaly detection

In this section, we present a sequential non-parametric
CPD method that represents a wide class of
commonly used anomaly detection strategies. This
method utilises one of the most popular algorithms
used in the single—rnetric/ single-link  anomaly
detection approach. This method is independent of the
network topology and traffic characteristics and can be
applied to monitor every type of network.
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The objective of CPD is to determine whether the
observed time series is statistically homogeneous and,
if not, to find the point in time when the change
happens [20, 21]. The attack detection algorithm that
is described below belongs to the sequential category
of CPD in which tests are done online with the data
presented sequentially and the decisions are made on

the fly.

Since non-parametric methods are not model-
specific, they are more suitable for analysing systems
like the Internet which is dynamic and complex. The
non-parametric cumulative sum (CUSUM) algorithm
is applied for the detection of attacks. The main idea
of the non-parametric CUSUM algorithm is that the
mean value of a random sequence {X,} is negative
during normal operation and becomes positive when a
change occurs.

Thus, we can consider {X,} as a stationary random
process which, under the normal conditions, the mean
is E(X,) = k. A parameter « is chosen to be an upper
bound of k, that is, & > k, and another random
process {Z,} is defined so that Z, = X, — «, which
has a negative mean during normal operation. The
purpose of introducing « is to offset the possible
positive mean in {X,} caused by small network
anomalies so that the test statistic y,, which is
described below, will be reset to zero frequently and
will not accumulate with time.

When an attack takes place, Z, will suddenly increase
and become a large positive number. Suppose, during an
attack, the increase in the mean of Z, can be lower
bounded by h. The change detection is based on the
observation of h > k.

More specifically, let y, = (y,—1 + Z,,)Jr

Jo =0

where xT is equal to x if x > 0 and O otherwise. The
decision function can be described as follows

dN()/n) = O
dy(y,) =1

if)/an
if)/n>N

where dy(y,) is the decision at time n: ‘0’ stands for
normal operation and ‘1’ for attack (a change occurs)
and N represents the attack threshold. This anomaly
detection method has been used with different types
of metrics, such as the SYN/FIN packet ratio [20] or
the percentage of new source IP addresses in a time
bin [21] in order to detect DoS attacks.

3.3 Application of selective sampling over
CPD with SYN/FIN ratio

In this section, we describe the application and impact of
the proposed selective sampling over a CPD-based
anomaly detection approach [20] that uses as a metric
(variable X,) the difference between SYN and FIN
packets divided by the number of FIN packets. The
SYN packets are the ones that have the TCP SYN flag
set, whereas the number of FIN packets that we use is
actually the sum of packets that have the FIN or RST
flag set. SYN packets denote the beginning of a TCP
connection, whereas FIN packets indicate the normal
termination of a TCP connection and RST packets
indicate  abnormal termination. Under normal
conditions, the appearance of an SYN packet will be
followed either by an FIN packet or an RST packet
when the connection terminates. Thus, X, has a
positive mean value near zero in normal condition,
whereas 7, has a negative value. When an SYN attack
occurs, X, becomes a large positive number and as a
result Z, becomes positive. This leads to the increase
in y, which indicates an attack if its value exceeds a
certain threshold.

The detection efficiency of the CPD method is
reflected by the slope of the curve of y, and is defined
by the corresponding degree of detection, expressed
in relation (3). In order to achieve better degree of
detection, the value of X,, which is the
difference between SYN and FIN packets divided by
the number of FIN packets, must be maximised.
Therefore the following expression that gives the
degree of detection must be maximised

Neony — MV
Degree of detection = YN FN 3)

N, FIN

where Ngyy is the total number of selected SYN packets
in a time bin and Npp the total number of selected FIN
packets in the same time bin.

The total number of selected SYN packets, Ngy;, is
given by the following expression

N

Noyn = Z

x=1

() L) S Y (e f ()
y=1

where S; is the total number of flows, N the maximum
flow size, £(x) the pmf of random variable x, which
represents the flow size in packets, p(x) the
probability of selecting a flow of size x and is given by
(1) and f(y|x) the conditional probability of a flow
having y SYN packets given that the flow size is equal
to x.
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Using (1), we obtain

z X

Noyn = Z c (x)- Se- Z ()’ 'f()’|X))
x=1 }':1
+ 2 twes Yo so) ) @
x=z+1 y=1

The total number of selected FIN packets, Ngpy;, is given
by the following expression

N

Nin = Z

P L) S+ Y (- g(ylv)
x=1 y=1
where g(ylx) is the conditional probability of a flow
having y FIN packets given that the flow size is equal
to x. Using (1), we obtain

V4 X

N = Z C'E(X)'Sf'Z()"EI(ﬂX))

x=1 y=1

N X
VA
+ Y 5D (gv) ) 6
x=z+1 n-x y=1

Substituting (4) and (5) in (3), we obtain an expression
that states the degree of detection with respect to
parameters z, ¢ and n. By selecting the appropriate
values for the parameters z, ¢ and n, we can maximise
(3), which will result in a better degree of attack
detection. The impact of these parameters on the
attack detection accuracy is studied in detail in the
next section.

4 Performance evaluation and
discussions

In this section, the effectiveness of the selective flow-
sampling technique designed in Section 3.1 combined
with the anomaly detection method described in
Section 3.2, under different attack/ anomalies
scenarios, is studied and evaluated. The results and
corresponding observations presented in this section
are based on real network data that have been
collected from an operational campus network. More
specifically, we monitored the link between the
National Technical University of Athens (NTUA) and
the Greek Research and Technology Network
(GRNET), which connects the university campus with
the Internet. This link has an average traffic of 70—
80 Mbit/ s and 20 000 packets/ s, containing a rich
network traffic mix carrying standard network
services such as web, mail, ftp and p2p application
traffic. In the following evaluation, a DDoS attack

www.ietdl.org

(TCP SYN attack) against a single host inside the
NTUA campus generated by a real DoS attack tool is
studied in detail.

In our experiments, in order to gain some insight
regarding the effectiveness of the selective sampling
technique, we first compare it against random flow
sampling. In random flow sampling, each flow is
selected independently with the same probability p.
The percentage of sampled flows was chosen as the
common criterion for the comparison. Furthermore,
in order to better evaluate and understand the
operational characteristics of selective sampling, we
study the tradeoff between the achievable degree of
detection and the number of selected packets during
the process of selective sampling with respect to its
various design parameters.

4.1 Comparative results

To better demonstrate the results and corresponding
observations, we study two scenarios for the CPD
method. In the first scenario, we compare selective
sampling with  the random flow sampling
experimenting with attacks that correspond to 2% of
the background traffic (in packets), whereas in the
second scenario, we further decrease the attack rate
to correspond to 1% of the background traffic. These
scenarios are examined under different sampling rates.

Fig. 1 presents the flow size distribution (in packets)
of the attack flows in the case of 2% attack rate. As we
can observe most of the attack flows have 1 or 2 packets.

In Fig. 1, we choose some characteristic values for the
parameters of selective sampling. More specifically, we
select values for z in order to distinct between small
and large flows. In our case, where the attack spreads

2000
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600 -

400}
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4 5 6 7 8 9
Flow size (packets)
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Figure 1 Flow size distribution of the attack flows for 2%
attack rate
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mainly among flows that have 1 or 2 packets, we choose
z=1 and 2. In the following, with the appropriate
value for parameter ¢, we define the proportion of
small flows that are sampled (in our experiments, we
use ¢ = 1.0 and 0.2), and with parameter n, we
adjust the selection of large flows. Greater values of n
result in the selection of smaller number of large
flows and consequently fewer packets. For the random
flow sampling algorithm, we select the appropriate
probability p which results in the same percentage
of sampled flows. Table 1 presents the parameters for
both sampling techniques and the corresponding
percentage of sampled packets.

It should be noted that the percentage of selected
packets in the case of selective sampling is significantly
smaller than the corresponding for the case of random
flow sampling. The number of selected packets is of
major importance, because the anomaly detection
algorithm inspects every sampled packet in order to
examine the TCP-flags header field.

In general, given the fact that small flows are usually
the source of many network attacks, the network
operator can select the appropriate values for z, ¢ and
n to detect a large set of attacks that consist of small
flows. Because of the fact that selective sampling
targets small flows, the number of sampled packets is
very small compared with the random sampling case
in which flows are selected with the same probability,
independent of their size. This is clearly demonstrated
by the results presented in Table 1; in selective
sampling, only 4% of the total number of packets
were sampled, whereas in the corresponding random
flow sampling case, the percentage of sampled packets
was ~45%.

The results depicted in Fig. 2 correspond to 2%
attack rate at the sampling rate of 45% with respect
to the number of flows. As we can observe, the
curve that corresponds to random flow sampling
resembles the curve of the unsampled case. On the
other hand, the selective sampling outperforms both
these cases (unsampled case and random flow
sampling) since the slope of the corresponding curve

Table 1 Parameters for each sampling technique and the
corresponding packet percentage

Flows, (%) Random flow Selective sampling
sampling
p Packets, | z| ¢ | n| Packets,
(%) (%)
45.12 0.45| 4567 |1(10(3 4.25
12.05 0.12| 1253 |2(0.2(6 2.05

35 T T
=+ Mo sampling

—s— Smarter sampling z=1,c=1.0,n=3
—#— Random flow sampling p=0.45

[ == Thresheold

25¢

20¢

Value of Yn

0 20 40 60 50 100 120 !-‘10 160 150 200

Time (sec)

Figure 2 Attack detection for 45% flow sampling (2% attack
rate)

for the selective sampling has increased significantly.
As we mentioned earlier, the slope represents the
degree of detection. In this scenario, it is obvious
that the detection effectiveness is significantly
improved in the case of selective sampling. This is
attributed to the fact that fewer FIN packets were
sampled (which are normally present on large
flows), and at the same time, all the SYN attack
packets have been captured.

In Fig. 3, we present the corresponding results for a
sampling rate of 12% with respect to the number of
sampled flows. In this case, the slope of the curve is
decreased, but we still achieve a better degree of
attack detection in the selective sampling case
compared with the unsampled case, even though a
small value of ¢ = 0.2 was used for the selection

probability of small flows.

15¢ T I

=+ Mo sampling
—+— Smarter sampling z=2,c=0.2, n=6
—4#— Random flow sampling p=0.12
e Threshold

Value of Yn

Time (sec)

Figure 3 Attack detection for 12% flow sampling (2% attack
rate)
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In the following, we reduced the attack rate to
correspond to 1% of the background traffic. Fig. 4
shows the flow size distribution (in packets) of the
attack flows. As we can observe most of the attack
flows have 1 packet. For this attack rate, we applied
random flow sampling and selective sampling with the
same sampling parameters as in the previous case of
2% attack rate. The corresponding results are
depicted in Figs. 5 and 6.

More specifically, in Fig. 5, we present the
corresponding results for the sampling rate of 45%
with respect to the number of sampled flows. It is
obvious that in the selective sampling case, the degree
of attack detection is still larger than the
corresponding of the unsampled case. This is due to

1500

1000

Flows

3 4 5 6 7 8 9
Flow size (packets)

Figure 4 Flow size distribution of the attack flows for 1%
attack rate

25 = =
=+ Mo sampling
== Selective sampling =1, ¢=1.0, n=3
—#— Random flow sampling p=0.45
e Threshold

— - ==

20+

Value of Yn
&

-
o

[1] 140 160 180 200
Time (sec)

Figure 5 Attack detection for 45% flow sampling (1% attack
rate)
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Figure 6 Attack detection for 12% flow sampling (1% attack
rate)

the fact that a significant portion of the attack flows
has been sampled. On the contrary, we have a smaller
degree of detection for the random flow sampling
case. More specifically, we observe that the attack is
not detected in time bin of 130 s for the random flow
sampling case.

Fig. 6 presents the corresponding results for 12%
flow sampling using 1% attack rate. The slope of the
curve for the case of selective sampling has decreased
and matches the unsampled case. This is attributed to
the fact that a smaller number of SYN packets is
generated during the attack, thus causing the
difference between the sum of SYN and FIN packets
to decrease. However, the algorithm fails to detect the
attack during the first time bin for the case of random
flow sampling.

4.2 Design tradeoffs for selective
sampling

In the following, we study the tradeoff between the
degree of detection [as it was defined in (3)] and the
number of selected packets during the process of
selective sampling. This study is based on the scenario
of SYN attack rate corresponding to 1% of the
background traffic. On the basis of the fact that the
major percentage of attack flows has a single packet
(Fig. 4), we chose parameter z = 1. Using (3)—(5),
we calculate the degree of detection for several values
of parameters ¢ and n.

Table 2 presents the degree of detection for
different values of parameter ¢ within the range
0.1 <c¢=<1.0 and step 0.1, and for different values
of parameter n ranging from 1 to 1000. As we
mentioned earlier in Section 3, parameter ¢ defines
the constant probability of the selection of small flows
(flows that have equal or less than z packets), whereas
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Table 2 Degree of detection with respect to parameters ¢ and n for
selective sampling

c n=1|n=5|n=10|n=20]|n=50|n=100|n= 1000
0.1 0.72 | 1.57 2.36 341 4.89 5.77 6.94
0.2 | 096 | 2.36 3.41 4.55 5.77 6.36 7.02
0.3 | 1.18 | 2.95 4.08 5.15 6.15 6.59 7.05
04| 138 | 3.41 4.55 5.52 6.36 6.71 7.06
05| 157 | 3.78 4.89 5.77 6.50 6.78 7.07
06| 1.75 | 4.08 5.15 5.95 6.59 6.83 7.07
0.7 192 | 433 5.35 6.09 6.66 6.87 7.08
0.8 | 2.07 | 4.55 5.52 6.20 6.71 6.90 7.08
09| 222 | 473 5.66 6.29 6.75 6.92 7.08
1.0 | 2.36 | 4.89 5.77 6.36 6.78 6.94 7.08

Table 3 Number of selected packets with respect to parameters c and n
for selective sampling

c n=1|n=5|n=10n=20]|n=50|n=100 |n= 1000
0.1 9536 | 2471 | 1588 1147 882 793 714
0.2 110241 | 3176 | 2293 1852 1587 1499 1419
0.3 110946 | 3881 | 2998 2557 2292 2204 2124
0.4 |11 651 | 4587 | 3703 3262 2997 2909 2829
0.5]12356 | 5292 | 4409 3967 3702 3614 3534
0.6 | 13062 | 5997 | 5114 | 4672 | 4407 4319 4239
0.7 113767 | 6702 | 5819 5377 5112 5024 4945
0.8 |14 472 | 7407 | 6524 | 6082 5817 5729 5650
0.9 115177 | 8112 | 7229 6787 6523 6434 6355
1.0 | 15882 | 8817 | 7934 | 7493 7228 7139 7060

parameter n characterise the selection of large flows.
The seclection of large flows is reduced by
increasing the value of parameter n. Specifically, in
Tables 3 and 4, we present the absolute number and
the corresponding percentage of selected packets (with
reference to the unsampled case) in a time bin of 10 s
with respect to parameters ¢ and n.

In the lower left corner of Tables 3 and 4, the number
and percentage of selected packets, respectively, for the
values ¢=1 and n=1 for selective sampling are
depicted. These values correspond to the simple case
of selective sampling that resembles the reverse of
smart sampling [13]. In the upper left corner, we

observe the case where only the 10% of small flows
are selected, which results in a decrease of selected
packets. In the lower right corner of the table, the
case in which the majority of large flows has been
discarded is depicted, and at the same time all small
flows have been selected. Finally, in the upper right
corner, we can observe the case where ¢ = 0.1 and
n = 1000. This corresponds to the case where we
have selected the minimum number of packets. As it
is illustrated in Table 4, the proposed algorithm
provides the flexibility of reducing the percentage of
selected  packets from 8.14% to 0.37% by
appropriately defining the corresponding values for
parameters ¢ and n.
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Table 4 Percentage of selected packets with respect to parameters ¢ and n for selective sampling
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c n=1, n=25, n =10, n = 20, n = 50, n = 100, n = 1000,
(%) (%) (%) (%) (%) (%) (%)
0.1 4.89 1.27 0.81 0.59 0.45 0.41 0.37
0.2 5.25 1.63 1.18 0.95 0.81 0.77 0.73
0.3 5.61 1.99 1.54 1.31 1.18 1.13 1.09
0.4 5.97 2.35 1.90 1.67 1.54 1.49 1.45
0.5 6.34 271 2.26 2.03 1.90 1.85 1.81
0.6 6.70 3.08 2.62 2.40 2.26 2.21 2.17
0.7 7.06 3.44 2.98 2.76 2.62 2.58 2.54
0.8 7.42 3.80 3.35 3.12 2.98 2.94 2.90
0.9 7.78 4.16 3.71 3.48 3.35 3.30 3.26
1.0 8.14 4.52 4.07 3.84 3.71 3.66 3.62

Degree of detection
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Figure 7 Degree of detection based on parameters c and n
for selective sampling

Packets
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Figure 8 Number of selected packets based on parameters
¢ and n for selective sampling

In Fig. 7, we graphically present the degree of
detection for the above values of parameters ¢ and n.
In this figure, the degree of detection increases as
parameter ¢ increases, whereas parameter n
remains constant, due to the fact that the majority of
the attack flows in our scenario has only one packet.
Thus, for large values of ¢, the absolute number of
SYN packets is larger, which results in a greater
difference between the sum of SYN and FIN
packets causing the increase of the degree of
detection. In contrast, the degree of detection
decreases with the reduction in parameter n for a
constant value of parameter c. This is attributed to
the fact that for small values of n, we tend to select
more large flows. Large flows are likely to contain
one SYN and one FIN packet. The selection of these
packets causes the ratio of the difference
between SYN and FIN packets divided by the
number of FIN packets to decrease, as the
denominator increases.

As mentioned before, our goal is to achieve a high
degree of detection while maintaining a small number
of processed packets. The number of selected packets
is given by (2). In Fig. 8, we present the number of
selected packets with respect to parameters ¢ and n.
As we can observe, the number of selected packets
decreases significantly for large values of the
parameter n and small values of parameter c. The
decrease in selected packets is significant from the case
of n=11to 5, as a considerable amount of large flows
is discarded. Combining the results of Figs. 7 and 8,
we observe that for the case under consideration
optimal values for parameters n and ¢ would be 1000
and 0.7. Specifically, from Fig. 7 (which corresponds
to Table 2), we note that the best degree of detection
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is given for values n = 1000 and ¢ = 0.7, 0.8, 0.9 and
1.0. Fig. 8 (which corresponds to Tables 3 and 4) depicts
the number of selected packets for each pair of
parameters ¢ and n. Therefore the values ¢ = 0.7 and
n = 1000 provide the best degree of detection with
the minimum number of selected packets.

5 Concluding remarks

In this paper, we considered the problem of improving
network anomaly detection effectiveness and efficiency
through the introduction and application of selective
flow-based sampling. Among the key motivations of
our approach is the exploitation of the fact that for
specific-purpose  applications  (such as  anomaly
detection) a large fraction of information is contained
in a small fraction of flows. Therefore based on the
observation that a wide range of attacks usually
originate from flows with a small number of packets
(e.g. DDoS attacks, portscans, worm propagation and
so on), we introduced and analysed a new flow-based
sampling technique that focuses on the preferential
selection of small flows.

Furthermore, we evaluated the impact of this sampling
technique under different scenarios in a highly DDoS attack
using a sequential non-parametric change-point anomaly
detection method. Our experiments and results
demonstrated that even with small attack and sampling
rates, the detection effectiveness is significantly improved
and in some scenarios outperforms even the unsampled
case, and at the same time, the number of packets that
need to be processed is reduced.

Moreover, the insight gained from this study can also
be used for the design of improved anomaly detection
algorithms. For instance, to achieve a better degree of
detection in the unsampled or the random flow
sampling case, we could consider a weight for each
SYN packet taking into account the flow size that the
particular SYN packet belongs to. In the current CPD
algorithm, the size of the flow that belongs to an SYN
packet is not considered. However, as we mentioned
earlier in this paper, an SYN packet that belongs to a
small flow (e.g. a single-packet flow) is more likely to
be part of an attack. Thus, if the CPD algorithm used
a weighted sum for the SYN packets, the attack
detection would be more effective, especially in the
case of small attacks.

Finally, the selective sampling technique described
in this paper, can be incorporated with IP traceback
techniques [22, 23] that focus on tracing the attack
flows from the target back to the real sources. More
specifically, deterministic packet marking (DPM) [24]
which marks every packet at the ingress router of a
network could benefit from selective sampling if the
packet marking process is applied after the sampling

process. A considerable amount of packets that is
usually not part of the attack does not need to be
marked, thus making the DPM scheme more
efficient.

6 References

[1] DeRI L, suiN s.: ‘Effective traffic measurement using
ntop’, IEEE Commun. Mag., 2000, 38, (5), pp. 138—143

[2] MCGREGOR T.,, BRAUN H.W., BROWN J.: “‘The NLANR network
analysis infrastructure’, [EEE Commun. Mag., 2000, 38,
(5), pp. 122-128

[3] DUFFIELD N., LUND c., THORUP M.: ‘Estimating flow
distributions from sampled flow statistics’, IEEE/ACM
Trans. Netw., 2005, 13, (5), pp. 933-946

[4] HOHN N., VEITCH D.: ‘Inverting sampled traffic’, IEEE/ACM
Trans. Netw., 2006, 14, (1), pp. 68—80

[5] BARFORD P, KLINE J., PLONKA D., ET AL.: ‘A signal analysis of
network traffic anomalies’. Proc. 2nd ACM SIGCOMM
Workshop on Internet Measurement, Marseille, France,
November 2002, pp. 71-82

[6] YEN. EMRAN S., CHEN Q., ETAL.: ‘Multivariate statistical
analysis of audit trails for host-based intrusion detection’,
IEEE Trans. Comput, 2002, 51, (7), pp. 810-820

[7] LEe w,, XIANG D.: ‘Information-theoretic measures for
anomaly detection’. Proc. IEEE Symp. Security and Privacy,
Oakland, CA, USA, May 2001, pp. 130-143

[8] BARFORD P, PLONKA D.: ‘Characteristics of network traffic
flow anomalies’. Proc. 1st ACM SIGCOMM Internet
Measurement Workshop, San Francisco, CA, USA,
November 2001, pp. 69-74

[9] SRIDHARAN A., YE T,, BHATTACHARYYA S.: ‘Connectionless port
scan detection on the backbone’. Malware Workshop (in
conjunction with IEEE IPCCC 2006), Phoenix, AZ, USA,
April 2006

[10] ESTAN C., KEYS K., MOORE D., ET AL.: ‘Building a better
netflow’. Proc. ACM SIGCOMM’04, Portland, OR, USA,
August 2004, pp. 245-256

[11] cHoiBY, PARKJ., ZHANG z.L.: ‘Adaptive packet sampling for
accurate and scalable flow measurement’. IEEE Global
Telecommunications Conf. (GLOBECOM’04), Dallas, TX,
USA, November 2004, pp. 1448—-1452

[12] xuLB., wu G.X., U LF.: ‘Packet-level adaptive sampling on
multi-fluctuation scale traffic. Proc. Int. Conf.
Communications, Circuits and Systems, Hong-Kong, China,
May 2005, pp. 604—-608

408/ IET Commun., 2008, Vol. 2, No. 3, pp. 399-409

doi: 10.1049/iet-com:20070231

© The Institution of Engineering and Technology 2008



[13] DUFFIELD N.G., LUND C.: ‘Predicting resource usage and
estimation accuracy in an IP flow measurement collection
infrastructure’. ACM SIGCOMM Internet Measurement
Conf., Miami, FL, USA, October 2003, pp. 179-191

[14] MmAI 1., SRIDHARAN A., CHUAH C.N., ETAL.: ‘Impact of packet
sampling on portscan detection’, |EEE J. Sel. Areas
Commun., 2006, 24, (12), pp. 2285-2298

[15] MAI 1., SRIDHARAN A., CHUAH C.N., ET AL.: ‘Is sampled
data sufficient for anomaly detection?’. Internet
Measurement Conf., Rio de Janeiro, Brazil, October 2006,
pp. 165-176

[16] EesTAN c., VARGHESE G.: ‘New directions in traffic
measurement and accounting’. Proc. SIGCOMM’02,
Pittsburgh, PN, USA, August 2002, pp. 323-336

[17] BRAUCKHOFF D., TELLENBACH B., WAGNER A., ET AL.: ‘Impact of
packet sampling on anomaly detection metrics’. Internet
Measurement Conf., Rio de Janeiro, Brazil, October 2006,
pp. 159-164

[18] ANDROULIDAKIS G., CHATZIGIANNAKIS V., PAPAVASSILIOU S., ET AL.:
‘Understanding and evaluating the impact of sampling on

www.ietdl.org

anomaly detection techniques’. IEEE  Military
Communications Conf., Washington, DC, USA, October 2006

[19] PACKET SAMPLING  (PSAMP) IETF  WORKING  GROUP
CHARTER: available at: http://www.ietf.org/html.charters/
psamp-charter.html

[20] WANG H., ZHANG D., SHIN K.G.: ‘Change-point monitoring for
the detection of DoS attacks’, IEEE Trans. Dependable Secur.
Comput., 2004, 1, (4), pp. 193-208

[21] PENG T, LECKIE C., RAMAMOHANARAO K.: ‘Proactively
detecting distributed denial of service attacks using
source IP address monitoring’. Proc. 3rd Int. IFIP-TC6
Networking Conf., Athens, Greece, May 2004

[22] BELENKY A., ANSARI N.: ‘On IP traceback’, IEEE Commun.
Mag., 2003, 41, (7), pp. 142-153

[23] GAao z., ANSARI N.: ‘A practical and robust inter-domain
marking scheme for IP traceback’, Comput. Netw., 2007,
51, (3), pp. 732-750

[24] BELENKY A., ANSARI N.: ‘On deterministic packet marking’,
Comput. Netw., 2007, 51, (10), pp. 2677—-2700

© The Institution of Engineering and Technology 2008

IET Commun., 2008, Vol. 2, No. 3, pp. 399—409/409

doi: 10.1049/iet-com:20070231






