


Abstract— In recent years, there have been an increasing

number of attacks on networks, such as the distributed

denial-of-service (DDoS) attack. However, the traditional network

is not sufficiently flexible to control the huge amount of traffic

that now passes through an intrusion detection system (IDS).

With software-defined networking (SDN), which separates

control planes and data planes for programmability, elasticity,

and simplicity, it becomes possible to force traffic to pass through

an IDS by simply re-routing or mirroring traffic to an IDS. This

article focuses on how to distribute traffic to multiple IDSs in

order to increase the detection of network attacks and balance

IDS loads. A clustering-based flow grouping scheme that

distributes flows according to routing information and flow data

rate is proposed. Through experiments with a virtualized testbed,

we show that the proposed scheme detects network attacks more

quickly and achieves a better balance of traffic loads on the IDSs.

I. INTRODUCTION

N the last few decades, as information and communication

technology (ICT) has been developed rapidly, daily activities

in today’s society have been increasingly accomplished using

the Internet. As a result, the amount of network traffic has

increased and the scale of network infrastructure has expanded

enormously. As ICT becomes an essential part of modern life,

many types of attacks against networks have been used,

including the denial of service (DoS), man-in-the-middle

attacks, sniffer attacks, and malware. In order to provide

security against these network-based attacks, intrusion

detection systems (IDSs) are widely used. An IDS is a device

that protects networks from various types of malicious attacks.

This system monitors network traffic and inspects data packets

to determine if the packets contain malicious attacks. If an IDS

finds suspicious activities, it generates an alarm and reports the

possibility of an ongoing network attack. An IDS is connected

to a certain host or link. This means that an IDS can inspect

traffic only from the connected source. Therefore, the intrusion

detection performance in a conventional network depends on

where the IDS is located. However, because the scale of the

network and the amount of its traffic have increased

exponentially, the number of IDSs deployed in a network

should be also increased proportionally.

In order to manage multiple IDSs efficiently,

software-defined networking (SDN) technology can be used.

SDN is an emerging network architecture that separates the

network control plane from the data plane. It has a centralized

The authors are with the Gwangju Institute of Science and Technology (GIST),
Republic of Korea.

controller, called the SDN controller, which is responsible for

all the network control decisions of the network-wide

distributed forwarding elements. OpenFlow is a

communication protocol standard between the SDN control

plane and the data plane of forwarding switches in the SDN.

With SDN technology, it is possible to easily check the network

status and to forward certain flows to a specific node.

In this article, the performance of an SDN-based network

with multiple IDSs is evaluated in terms of its ability to inspect

the transfer of malicious data. With SDN technology,

suspicious flows can be forwarded to specific IDS. If the flows

from the same attack are forwarded to the same IDS, it is

intuitively expected to achieve better inspection of the attack.

Based on this, a flow grouping scheme that determines which

flows should be forwarded to which IDSs is proposed to

achieve the best intrusion detection performance.

II. RELATED WORK

A. DDoS Attack Detection

In general, there are three ways for an IDS to detect a

distributed denial-of-service (DDoS) flooding attack:

source-based, destination-based, and network-based detection

[1]. The source-based method deploys an IDS close to the

source. This can minimize resource waste associated with

detecting and responding to attacks. However, it is difficult to

detect the attack when the attacking sources are distributed. In

contrast, the destination-based method places an IDS close to

the victims. Though it is much easier to detect the attack, it is an

inefficient use of the network resources. Network-based

methods deploy an IDS in the intermediate networks. This

represents a compromise between the other two methods.

There exists research on DDoS attack detection that uses the

characteristics of the attack. Androulidakis et al. [2] proposed

an intrusion detection technique that samples packets according

to the size of the flows. Given that smaller flows are usually the

source of network attacks, the main targets of inspection are

flows whose size is smaller than a certain threshold. Kawahara

et al. [3] proposed a flow statistic based strategy. Many

network attacks cause an increasing number of flows when they

attack. However, the sampling approach often fails to find this

increment. This problem was solved by partitioning sampled

traffic into groups using a source autonomous system. Giotis et

al. [4] used the change in entropy to detect a network attack.

For instance, a significant entropy drop in the destination

internet protocol (IP) address and destination port indicates the

possibility that the network is under a DDoS attack.

Suspicious Flow Forwarding for Multiple Intrusion

Detection Systems on Software-Defined Networks

Taejin Ha, Seunghyun Yoon, Aris Cahyadi Risdianto, JongWon Kim, and Hyuk Lim

I

B. SDN-based Intrusion Detection

Because of the inherent scalability and programmability of a

network, SDN can be used for security enhancement. NetFuse

[5] is a mechanism for cloud and data center environments to

protect themselves against traffic overloads from network

attacks, operator errors, or routing misconfigurations. It uses

both passive listening and adaptive active queries to monitor

network status effectively. CloudWatcher [6] uses an SDN to

build a framework to efficiently monitor services in large and

dynamic cloud networks. The framework enables the network

administrators to protect their network easily by writing a

simple policy script. Fayaz et al. [7] proposed the Bohatei

DDoS defense system, which was built on an SDN and NFV

(network function virtualization) platform. This system is

scalable because its resource management algorithm controls

the network in order to avoid control and data plane bottlenecks

in the SDN based DDoS defense system. In addition, it exploits

NFV capability to flexibly place the defense virtual machine

(VM) resources in the locations where they are needed on the

network. Mehdi et al. [8] considered how to exploit the SDN

technology in order to effectively detect and mitigate the traffic

anomaly in home and SOHO (small office / home office)

networking environments. In their work, they implemented

four traffic anomaly detection algorithms in an SDN testbed

running a NOX controller and showed that efficient anomaly

detection can be achieved without disturbing user data traffic.

Yoon et al. [9] investigated how the SDN technology can

enhance network security. They implemented various network

security functions such as firewalls, IPS (intrusion prevention

system), and IDS using available SDN features and then

evaluated the feasibility and performances of the security

functions in real SDN testbeds with OpenFlow-enabled

switches. Chu et al. [10] proposed the DDoS defender

implemented on the OpenFlow controller. Once the amount of

traffic exceeds a predetermined threshold, a DDoS attack is

identified and the rules for the controller change in order to

drop the incoming packets. Braga et al. [11] proposed a DDoS

flooding detection algorithm based on traffic patterns. This

method classifies network traffic by using self-organizing maps.

When flows are classified as malicious, the controller drops the

flow. FlowRanger [12] is a solution that interrupts DDoS

attacks using a priority-based scheme. The trust management

module inspects incoming routing requests and determines

whether they are malicious. If the requests are not trustworthy,

then they are given a lower priority than regular requests.

Therefore, the DDoS attack does not work smoothly. Wang et

al. [13] proposed a graphic model based on an attack detection

method that deals with a dataset shift problem. It saves known

traffic patterns as a relational graph. If new traffic is generated,

the system can determine whether the traffic is malicious by

comparing the graphs.

However, most schemes considered networks with only a

single IDS, and they do not consider how a huge volume of

suspicious flow traffic can be handled for enhancing intrusion

detection performance with multiple IDSs. Some approaches

with multiple IDSs such as [7] mainly focused on

load-balancing among the IDSs.

III. PROPOSED TRAFFIC FORWARDING ALGORITHM

A. Motivation

Consider a network with SDN-enabled switches and multiple

IDSs as shown in Figure 1. In SDN-based network intrusion

methods, unlike in conventional networks that can only inspect

traffic directly passing through an IDS, flows are forwarded to

one of the IDSs using SDN technology. This makes the analysis

of malicious incoming packets more flexible. There are new

challenges associated with forwarding flows properly and

balancing loads between IDSs in SDN-based intrusion

detection methods.

When detecting DDoS attacks, many intrusion detection

algorithms use a simple rule to check that the number of packets

going to a specific destination does not exceed a certain

threshold within a specific unit of time. If malicious traffic

flows belonging to the same attack are assigned to the same

group and forwarded to the same IDS, it is expected to achieve

a higher probability of detecting the attack since it is easier to

exceed the threshold of the pre-defined rule. Unfortunately, it is

impossible to judge whether the flow is malicious or not before

inspection. Instead, flow path information can be exploited to

distinguish the flows. Most network-based attacks generate a

huge number of flows when the attacks occur. Usually the

attacks target only a few victims. That is, a large number of

attacking senders generate malicious flows and send them to a

small number of victims. These malicious flows destined for

the victim gradually converge on the network and eventually

meet at the routers close to the victim. As a result, the paths of

the malicious flows have a common portion of paths. Even in

the case where there are no common routers on the paths, the

flows originating from or targeting the same host would have a

topological proximity to each other. This observation motivates

the system to make groups of flows according to their similarity

and to forward them to the same IDS. This grouping does not

guarantee that all the flows belonging to the same attack are

forwarded to the same IDS; however, these flows are more

likely to be forwarded together to the same IDS under the

grouping algorithm. Another benefit of flow-grouping is the

load-balancing of the IDSs. In conventional networks, because

Fig. 1. Suspicious traffic inspection architecture with multiple IDSs on an

SDN-based network.

the IDS is fixed to a certain link or node, if network traffic is not

uniformly generated, then the IDSs are utilized unequally. With

an SDN, flows can be forwarded to any IDS in the network,

resulting in balanced IDS loads.

The motivations for the proposed algorithm can be

summarized as follows:

• Fast Intrusion Detection: There are a number of IDSs in

the present day networks and each IDS, in general, detects

intrusions by matching packet patterns to known attack

patterns. In order to notice the existence of attacks, the

number of detected malicious packets within a certain

time satisfies a pre-defined set of rules. Thus, better

inspection performance is obtained if malicious flows

belonging to the same attack are forwarded to the same

IDS. The proposed algorithm finds the flows that have a

close relationship in terms of routers on the path and

groups them.

• IDS Load-balancing: Conventional networks place IDSs

with specific nodes or links. As a result, IDSs can inspect

the traffic of only those nodes or links. Since the

utilizations of IDSs are dependent on their location, IDSs

are not utilized in a balanced way. The proposed

algorithm performs load-balancing when it groups the

flows and assigns each group of flows to the IDSs.

B. System model

Consider an SDN-based network composed of 𝑘 IDSs and 𝑛

SDN-enabled switches. The inspection capacities of IDSs are

denoted as the IDS capacity vector C = [c1, ···, ck]T. Suppose

there are f flows in the network and their data rates are

represented with the vector s = [s1, ···, sf]T. In the SDN-based

network, the flow status of each SDN-enabled switch can be

checked using the APIs of the SDN controller. The status

includes flow information such as the MAC address of a source

node and a destination node, the volume of packets and bytes,

flow ID, priority, and so on. Since OpenFlow does not provide

the flow rate information, the rate vector s should be indirectly

estimated by periodically checking the per-flow counters such

as ‘byte count’ and ‘packet count’ values, which are accessible

by the standard SDN northbound interfaces (e.g., REST APIs).

Let A denote the flow routing matrix, which is an n-by-f

binary matrix. For example, if flow j passes through switch i,

then element aij in A is 1.

𝐀 = (

𝑎11 ⋯ 𝑎1𝑓

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑓

) , aij ∈ {0,1}. (1)

The proposed algorithm categorizes flows into several

groups based on the similarity between flow paths. Because the

number of switches that each flow passes through is quite small

in the context of the whole network, it seems that the flow paths

do not have any correlation if they do not belong to the same

attack. To compute the similarity, the proposed algorithm uses

principal component analysis (PCA). PCA converts a set of

observations of possibly correlated variables into a set of values

of linearly uncorrelated variables called principal components.

PCA projects the observations into a new, uncorrelated space of

smaller dimension. Using PCA, the dimension of flow routing

matrix 𝑨 is reduced to an m-by-f matrix (denoted by 𝐀′),

meaning that m PCs are used to make the new space. PCs used

for dimension reduction are represented as p =
{𝑝𝑐1, 𝑝𝑐2, … , 𝑝𝑐m}𝑇 . While each column vector in A

corresponds to the coordinate of the flow in the original

n-dimensional space, the column vector in 𝐀′ corresponds to

the coordinate in the m-dimensional space. Then, the similarity

between two flows is obtained by the Euclidean distance

between the coordinates of the flows in the reduced and

uncorrelated space. Figure 2 shows an example of the

2-dimensional space of A. Two principal components v1 and v2

by PCA are depicted in Figure 2. If m = 1, the coordinates are

projected into a single point on v1 axis. Then, the coordinate

points can be clustered into two groups depending on the

distance between the points in 1-dimensional space.

C. Flow grouping and load-balancing

The flows are clustered into 𝑔 groups, and 𝑔 is simply set to

the number of IDSs, (i.e. 𝑔 = 𝑘). Let G = [G1, ···, Gk]T and B =

[b1, ···, bk]T denote the set of groups and the set of data rates in

the groups, respectively. The sum of data rates of flows in i-th

group is given by bi, which is obtained by 𝑏𝑖 = ∑ 𝑠𝑗𝑗∈𝐺𝑖
. The

proposed algorithm uses the gravity based clustering [14] in

order to group flows. Gravity based clustering exploits the

density of points. First, the area of the region 𝐀′ is measured.

Because there are 𝑘 IDSs, each group has an initial radius as

follows:

 𝑟 = √
Area of region A′

𝑘⋅𝜋
. (2)

After calculating the group radius 𝑟, cluster header nodes are

selected. For each node, the number of nodes that exist within 𝑟

is counted. Then, the node with the largest number of neighbor

nodes is chosen as the first cluster header. In order to choose the

second cluster header, the counting process is repeated,

excluding the first cluster header nodes and its neighbor nodes.

Through this procedure, the properly distributed cluster header

nodes are obtained, and each node belongs to the cluster with

the closest cluster header.

Until now, each flow is assigned to one of 𝑘 groups, and the

data packets of each group’s flows are forwarded to the same

IDS. However, since this grouping does not consider the data

Fig. 2. Suspicious flow grouping using PCA.

Fig. 2. Suspicious flow grouping using PCA.

rate for each group, the traffic loads for each IDS are

unbalanced. In this case, there is a possibility that the loads will

exceed the capacity of the IDS. In order to prevent the overflow

of packets in IDS, the flow grouping should take the total data

rate of the groups into consideration. The idea of balancing the

data rates is to adjust the group radius according to the group

data rate. If a certain group has a larger group data rate, the

group data rate can be reduced by reducing the group area.

Accordingly, in order to increase the group data rate, the group

area size can be enlarged. Therefore, the radius of each group is

set to be inversely proportional to the group data rate. That is,

the new group radius of the i-th group can be obtained as

follows:

 𝑟𝑖
′ = 𝑟𝑖 ⋅

∑ 𝑏𝑗
𝑘
𝑗=1

𝑘 ∙ 𝑏𝑖
. (3)

This balancing algorithm is repeatedly performed until the ratio

between the maximum and minimum group data rates is

smaller than a certain threshold 𝛿𝑔.

IV. EXPERIMENTAL RESULT

In order to verify the proposed algorithm, an SDN-enabled

testbed was used for experiments. The testbed runs on a single

workstation (specifications: Intel Xeon W3565 CPU and 48 GB

RAM) and is composed of five different key parts:

virtualization, tapping and mirroring, centralized control,

traffic and attack generation, and intrusion detection.

A. Virtualization

In order to run the experiments, which involve a high number

of nodes and functions (i.e., switches and hosts), a

virtualization technique is deployed in the testbed. Linux

Container (LXC) and Open vSwitch (OVS) are often used to

virtualize a host machine and its network connectivity. LXC is

a userspace interface for the Linux kernel containment features

that creates an environment similar to a standard Linux

installation without the need for a separate kernel. It can be

used to deploy functions or services such as servers, clients,

load balancers, software IDSs, and other network services

including an SDN controller. OVS is a software-based

multilayer network switch that virtualizes the network and

provides multiple protocols and standards that are often used in

networks. The network topology of the testbed can be created

by connecting OVS switches via OVS patching and is managed

centrally by using the SDN Controller. This

virtualization-based testbed is more similar to a real physical

network environment than conventional simulators or

emulators because each container operates software and

applications independently, and is connected to the OVS using

its own virtualized network interfaces.

B. Tapping and Mirroring

One important operation for intrusion detection is how to

capture suspicious network traffic from the network. One

famous method is the ‘tapping’ mechanism, which exploits

network TAPs (terminal access points) that can passively

capture traffic on a network. In this experiment, virtual OVS

ports are created for passive traffic tapping. With a simple TAP

aggregation application, the packets can also be filtered, and the

filtered packets can then be redirected to any port. The filtering

process matches the packets with specific packet identifiers or

parameters (i.e., IP addresses, protocol types, TCP/UDP ports,

and VLAN ID) and then redirects those flows to specific ports.

This mechanism is known as the flow tapping mechanism, and

the captured traffic can easily be managed from the centralized

SDN controllers.

In another mechanism known as ‘port mirroring’, packets are

replicated based on their incoming or outgoing ports and can be

sent to other ports. The SDN controllers can replicate traffic

flows by performing additional ‘OUTPUT’ action to the flows

to be mirrored. Then, the replicated packets can be sent directly

to the packet processing tools (i.e., IDS, traffic analyzer, and

network manager) or sent to another connected switch by

updating the flow table of the switches. The original traffic and

replicated traffic can be distinguished by assigning different

VLAN tags on the network.

C. Centralized Control

As mentioned earlier, OVS-based network topology requires

centralized control for network programmability. The SDN

controller manages all requests and policies for switch

interconnection and then translates them into forwarding rules

(flow entries) in the switches. The controller periodically

communicates with switches to collect the state of the flows or

other statistical measurements. In this testbed, two SDN

controllers are used to distinguish between real data traffic and

replicated traffic. Each type of traffic is handled by a different

controller. Open Network Operating System (ONOS) is used to

deliver data traffic flows from senders to receivers.

OpenDaylight is used to deliver tapped or replicated packets to

the IDSs for traffic inspection.

D. Traffic and Attack Generation

An important aspect of this experiment is the generation of

user traffic and attacker traffic with a realistic pattern (i.e.

traffic paths, traffic rates, and burstiness) in the testbed

environment. In addition, the generated traffic should be

identified and controlled. For user traffic, the iperf program is

used to simulate user traffic by specifying the sender and

receiver with a specific traffic rate. Attack traffic is generated

from an attacker node in several identified locations by using

the Scapy [15] application, which is a python-based packet

manipulation tool. In this experiment, TCP SYN DoS attacks

using HTTP port (80) are performed. Each attacker VM runs

multiple Scapy scripts to generate TCP request packets

destined for the victim. The location of the traffic

sender/receiver and attacker are randomly selected (it could

originate from anywhere in the network and attach to any traffic

switch), but should be identified in order to analyze the path as

required in the flow-grouping scheme.

E. Intrusion Detection

To inspect network traffic, there are many software-based

IDSs, such as Snort and Suricata. In the testbed, Snort IDS is

used for intrusion detection. Snort is an open-source IDS

software that inspects network traffic by matching it with

pre-defined rule sets. Snort can be easily installed and run in a

low-cost virtualized environment (i.e., VMs and containers). In

order to increase performance, based on the total user traffic,

multiple IDSs can be deployed and used to handle some parts of

the traffic analysis. The flow tapping mechanism helps traffic

distribution between IDSs by connecting all IDSs with the same

tapping aggregation switch that filters the traffic packets either

randomly or with the flow-grouping scheme, and the filtered

packets are sent into specific ports connected to specific IDS

numbers. Snort IDS performs intrusion detection by counting

the number of attack packets in a specific time duration before

generating alarms or alerts. The more attack packets detected

by the same IDS, the more likely that alarms or alerts will be

generated.

Figure 3 shows the network topology of the SDN testbed

with 19 SDN-enabled switches (15 switches for network

topology and 4 switches for tapping and mirroring), and 29

containers (23 containers for traffic generation and 6 containers

for IDSs). The number of flows generated is 30, and their flow

rates vary from 1 Mb/s to 10 Mb/s. The number of attacking

flows is 5 with a rate of 0.5 Mb/s. Note that DDoS attack uses a

low rate with a number of small-sized packets. The IDS detects

this attack when more than 800 packets are analyzed during 1

second.

Figure 4(a) shows the accumulated number of alarms

reported by the Snort IDS for the proposed algorithm and a

random IDS selection algorithm. The first alarm of the

proposed algorithm is earlier than that of the random method,

and the number of alarms for the proposed algorithm is greater

than that for the random algorithm. This result indicates that the

proposed algorithm can achieve better intrusion detection

performance relative to the random method. Figure 4(b) shows

the min/max ratio of IDS loads. The ratio of the proposed

algorithm is closer to 1, which implies that the loads are

balanced well among the IDSs.

V. CONCLUSION

In this article, we considered the detection of malicious

attacks on SDNs with multiple IDSs. With multiple IDSs, the

intrusion detection performance highly depends on how the

suspicious traffic flows are distributed among the multiple

IDSs. The proposed algorithm distributes the flows to multiple

IDSs according their routing paths. If two flows are close to

each other in terms of the routing path, they are forwarded to

the same IDS. The proposed algorithm uses a gravity clustering

algorithm to group the flows, and the cluster size is inversely

proportional to the sum of the data rates in each group for

load-balancing purposes. The experimental results indicated

that the proposed algorithm outperforms a strategy that

randomly distributes flows to the IDSs.

VI. REFERENCES

[1] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms

against distributed denial of service (DDoS) flooding attacks,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 4, pp. 2046–2069,

March 2013.

[2] G. Androulidakis and S. Papavassiliou, “Improving network anomaly
detection via selective flow-based sampling,” Institution of Engineering

and Technology (IET), vol. 2, no. 3, pp. 399–409, April 2008.

[3] R. Kawahara, T. Mori, N. Kamiyama, S. Harada, and S. Asano, “A study
on detecting network anomalies using sampled flow statistics,” in

IEEE/IPSJ International Symposium on Applications and the Internet

(SAINT), January 2007, pp. 81–81.
[4] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V.

Maglaris, “Combining OpenFlow and sFlow for an effective and scalable

anomaly detection and mitigation mechanism on SDN environments,”
Computer Networks, vol. 62, pp. 122–136, April 2014.

[5] Y. Wang, Y. Zhang, V. Singh, C. Lumezanu, and G. Jiang, “NetFuse:
Short-circuiting traffic surges in the cloud,” in IEEE International

Conference on Communications (ICC), June 2013, pp. 3514–3518.

Fig. 3. Network configuration of the SDN-enabled testbed.

(a) Attack detection performance

(b) Load-balancing performance

Fig. 4. Experiment results on SDN-enabled testbed.

[6] S. Shin and G. Gu, “CloudWatcher: Network security monitoring using

OpenFlow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?),” in IEEE International Conference on

Network Protocols (ICNP), October 2012, pp. 1–6.

[7] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible and
elastic DDoS defense,” in 24th USENIX Security Symposium (USENIX

Security 15), August 2015, pp. 817-832.

[8] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in International Workshop

on Recent Advances in Intrusion Detection, Springer Berlin Heidelberg,

September 2011, pp. 161-180.
[9] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang, “Enabling

security functions with SDN: A feasibility study,” Computer Networks,

July 2015, pp. 19-35.
[10] Y.H. Chu, M.C. Tseng, Y.T. Chen, Y.C. Chou, and Y.R. Chen, “A novel

design for future on-demand service and security,” in IEEE International

Conference on Communication Technology (ICCT), November 2010, pp.
385–388.

[11] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack

detection using NOX/OpenFlow,” in IEEE Conference on Local
Computer Networks (LCN), October 2010, pp. 408–415.

[12] L. Wei and C. Fung, “FlowRanger: A request prioritizing algorithm for

controller DoS attacks in software defined networks,” in IEEE
International Conference on Communications (ICC), June 2015, pp.

6876–6881.

[13] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “DDoS attack protection in
the era of cloud computing and software-defined networking,” Computer

Networks, vol. 81, pp. 308–319, 2015.
[14] M. Indulska and M. E. Orlowska, “Gravity based spatial clustering,” in

ACM international symposium on advances in Geographic Information

Systems (GIS), November 2002, pp. 125–130.
[15] “Scapy,” http://www.secdev.org/projects/scapy/.

