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Abstract— In recent years, there have been an increasing 

number of attacks on networks, such as the distributed 

denial-of-service (DDoS) attack. However, the traditional network 

is not sufficiently flexible to control the huge amount of traffic 

that now passes through an intrusion detection system (IDS). 

With software-defined networking (SDN), which separates 

control planes and data planes for programmability, elasticity, 

and simplicity, it becomes possible to force traffic to pass through 

an IDS by simply re-routing or mirroring traffic to an IDS. This 

article focuses on how to distribute traffic to multiple IDSs in 

order to increase the detection of network attacks and balance 

IDS loads. A clustering-based flow grouping scheme that 

distributes flows according to routing information and flow data 

rate is proposed. Through experiments with a virtualized testbed, 

we show that the proposed scheme detects network attacks more 

quickly and achieves a better balance of traffic loads on the IDSs. 

I. INTRODUCTION 

N the last few decades, as information and communication 

technology (ICT) has been developed rapidly, daily activities 

in today’s society have been increasingly accomplished using 

the Internet. As a result, the amount of network traffic has 

increased and the scale of network infrastructure has expanded 

enormously. As ICT becomes an essential part of modern life, 

many types of attacks against networks have been used, 

including the denial of service (DoS), man-in-the-middle 

attacks, sniffer attacks, and malware. In order to provide 

security against these network-based attacks, intrusion 

detection systems (IDSs) are widely used. An IDS is a device 

that protects networks from various types of malicious attacks. 

This system monitors network traffic and inspects data packets 

to determine if the packets contain malicious attacks. If an IDS 

finds suspicious activities, it generates an alarm and reports the 

possibility of an ongoing network attack. An IDS is connected 

to a certain host or link. This means that an IDS can inspect 

traffic only from the connected source. Therefore, the intrusion 

detection performance in a conventional network depends on 

where the IDS is located. However, because the scale of the 

network and the amount of its traffic have increased 

exponentially, the number of IDSs deployed in a network 

should be also increased proportionally. 

In order to manage multiple IDSs efficiently, 

software-defined networking (SDN) technology can be used. 

SDN is an emerging network architecture that separates the 

network control plane from the data plane. It has a centralized 
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controller, called the SDN controller, which is responsible for 

all the network control decisions of the network-wide 

distributed forwarding elements. OpenFlow is a 

communication protocol standard between the SDN control 

plane and the data plane of forwarding switches in the SDN. 

With SDN technology, it is possible to easily check the network 

status and to forward certain flows to a specific node.  

In this article, the performance of an SDN-based network 

with multiple IDSs is evaluated in terms of its ability to inspect 

the transfer of malicious data. With SDN technology, 

suspicious flows can be forwarded to specific IDS. If the flows 

from the same attack are forwarded to the same IDS, it is 

intuitively expected to achieve better inspection of the attack. 

Based on this, a flow grouping scheme that determines which 

flows should be forwarded to which IDSs is proposed to 

achieve the best intrusion detection performance. 

II. RELATED WORK 

A. DDoS Attack Detection 

In general, there are three ways for an IDS to detect a 

distributed denial-of-service (DDoS) flooding attack: 

source-based, destination-based, and network-based detection 

[1]. The source-based method deploys an IDS close to the 

source. This can minimize resource waste associated with 

detecting and responding to attacks. However, it is difficult to 

detect the attack when the attacking sources are distributed. In 

contrast, the destination-based method places an IDS close to 

the victims. Though it is much easier to detect the attack, it is an 

inefficient use of the network resources. Network-based 

methods deploy an IDS in the intermediate networks. This 

represents a compromise between the other two methods. 

There exists research on DDoS attack detection that uses the 

characteristics of the attack. Androulidakis et al. [2] proposed 

an intrusion detection technique that samples packets according 

to the size of the flows. Given that smaller flows are usually the 

source of network attacks, the main targets of inspection are 

flows whose size is smaller than a certain threshold. Kawahara 

et al. [3] proposed a flow statistic based strategy. Many 

network attacks cause an increasing number of flows when they 

attack. However, the sampling approach often fails to find this 

increment. This problem was solved by partitioning sampled 

traffic into groups using a source autonomous system. Giotis et 

al. [4] used the change in entropy to detect a network attack. 

For instance, a significant entropy drop in the destination 

internet protocol (IP) address and destination port indicates the 

possibility that the network is under a DDoS attack.  
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B. SDN-based Intrusion Detection  

Because of the inherent scalability and programmability of a 

network, SDN can be used for security enhancement. NetFuse 

[5] is a mechanism for cloud and data center environments to 

protect themselves against traffic overloads from network 

attacks, operator errors, or routing misconfigurations. It uses 

both passive listening and adaptive active queries to monitor 

network status effectively. CloudWatcher [6] uses an SDN to 

build a framework to efficiently monitor services in large and 

dynamic cloud networks. The framework enables the network 

administrators to protect their network easily by writing a 

simple policy script. Fayaz et al. [7] proposed the Bohatei 

DDoS defense system, which was built on an SDN and NFV 

(network function virtualization) platform. This system is 

scalable because its resource management algorithm controls 

the network in order to avoid control and data plane bottlenecks 

in the SDN based DDoS defense system. In addition, it exploits 

NFV capability to flexibly place the defense virtual machine 

(VM) resources in the locations where they are needed on the 

network. Mehdi et al. [8] considered how to exploit the SDN 

technology in order to effectively detect and mitigate the traffic 

anomaly in home and SOHO (small office / home office) 

networking environments. In their work, they implemented 

four traffic anomaly detection algorithms in an SDN testbed 

running a NOX controller and showed that efficient anomaly 

detection can be achieved without disturbing user data traffic.  

Yoon et al. [9] investigated how the SDN technology can 

enhance network security. They implemented various network 

security functions such as firewalls, IPS (intrusion prevention 

system), and IDS using available SDN features and then 

evaluated the feasibility and performances of the security 

functions in real SDN testbeds with OpenFlow-enabled 

switches. Chu et al. [10] proposed the DDoS defender 

implemented on the OpenFlow controller. Once the amount of 

traffic exceeds a predetermined threshold, a DDoS attack is 

identified and the rules for the controller change in order to 

drop the incoming packets. Braga et al. [11] proposed a DDoS 

flooding detection algorithm based on traffic patterns. This 

method classifies network traffic by using self-organizing maps. 

When flows are classified as malicious, the controller drops the 

flow. FlowRanger [12] is a solution that interrupts DDoS 

attacks using a priority-based scheme. The trust management 

module inspects incoming routing requests and determines 

whether they are malicious. If the requests are not trustworthy, 

then they are given a lower priority than regular requests. 

Therefore, the DDoS attack does not work smoothly. Wang et 

al. [13] proposed a graphic model based on an attack detection 

method that deals with a dataset shift problem. It saves known 

traffic patterns as a relational graph. If new traffic is generated, 

the system can determine whether the traffic is malicious by 

comparing the graphs. 

However, most schemes considered networks with only a 

single IDS, and they do not consider how a huge volume of 

suspicious flow traffic can be handled for enhancing intrusion 

detection performance with multiple IDSs. Some approaches 

with multiple IDSs such as [7] mainly focused on  

load-balancing among the IDSs. 

III. PROPOSED TRAFFIC FORWARDING ALGORITHM  

A. Motivation 

Consider a network with SDN-enabled switches and multiple 

IDSs as shown in Figure 1. In SDN-based network intrusion 

methods, unlike in conventional networks that can only inspect 

traffic directly passing through an IDS, flows are forwarded to 

one of the IDSs using SDN technology. This makes the analysis 

of malicious incoming packets more flexible. There are new 

challenges associated with forwarding flows properly and 

balancing loads between IDSs in SDN-based intrusion 

detection methods. 

When detecting DDoS attacks, many intrusion detection 

algorithms use a simple rule to check that the number of packets 

going to a specific destination does not exceed a certain 

threshold within a specific unit of time. If malicious traffic 

flows belonging to the same attack are assigned to the same 

group and forwarded to the same IDS, it is expected to achieve 

a higher probability of detecting the attack since it is easier to 

exceed the threshold of the pre-defined rule. Unfortunately, it is 

impossible to judge whether the flow is malicious or not before 

inspection. Instead, flow path information can be exploited to 

distinguish the flows. Most network-based attacks generate a 

huge number of flows when the attacks occur. Usually the 

attacks target only a few victims. That is, a large number of 

attacking senders generate malicious flows and send them to a 

small number of victims. These malicious flows destined for 

the victim gradually converge on the network and eventually 

meet at the routers close to the victim. As a result, the paths of 

the malicious flows have a common portion of paths. Even in 

the case where there are no common routers on the paths, the 

flows originating from or targeting the same host would have a 

topological proximity to each other. This observation motivates 

the system to make groups of flows according to their similarity 

and to forward them to the same IDS. This grouping does not 

guarantee that all the flows belonging to the same attack are 

forwarded to the same IDS; however, these flows are more 

likely to be forwarded together to the same IDS under the 

grouping algorithm. Another benefit of flow-grouping is the 

load-balancing of the IDSs. In conventional networks, because 

Fig. 1.  Suspicious traffic inspection architecture with multiple IDSs on an 

SDN-based network. 



the IDS is fixed to a certain link or node, if network traffic is not 

uniformly generated, then the IDSs are utilized unequally. With 

an SDN, flows can be forwarded to any IDS in the network, 

resulting in balanced IDS loads.  

The motivations for the proposed algorithm can be 

summarized as follows:  

• Fast Intrusion Detection: There are a number of IDSs in 

the present day networks and each IDS, in general, detects 

intrusions by matching packet patterns to known attack 

patterns. In order to notice the existence of attacks, the 

number of detected malicious packets within a certain 

time satisfies a pre-defined set of rules. Thus, better 

inspection performance is obtained if malicious flows 

belonging to the same attack are forwarded to the same 

IDS. The proposed algorithm finds the flows that have a 

close relationship in terms of routers on the path and 

groups them. 

• IDS Load-balancing: Conventional networks place IDSs 

with specific nodes or links. As a result, IDSs can inspect 

the traffic of only those nodes or links. Since the 

utilizations of IDSs are dependent on their location, IDSs 

are not utilized in a balanced way. The proposed 

algorithm performs load-balancing when it groups the 

flows and assigns each group of flows to the IDSs.  

B. System model 

Consider an SDN-based network composed of 𝑘 IDSs and 𝑛 

SDN-enabled switches. The inspection capacities of IDSs are 

denoted as the IDS capacity vector C = [c1, ···, ck]T. Suppose 

there are f flows in the network and their data rates are 

represented with the vector s = [s1, ···, sf]T. In the SDN-based 

network, the flow status of each SDN-enabled switch can be 

checked using the APIs of the SDN controller. The status 

includes flow information such as the MAC address of a source 

node and a destination node, the volume of packets and bytes, 

flow ID, priority, and so on. Since OpenFlow does not provide 

the flow rate information, the rate vector s should be indirectly 

estimated by periodically checking the per-flow counters such 

as ‘byte count’ and ‘packet count’ values, which are accessible 

by the standard SDN northbound interfaces (e.g., REST APIs). 

Let A denote the flow routing matrix, which is an n-by-f 

binary matrix. For example, if flow j passes through switch i, 

then element aij in A is 1. 

𝐀 = (

𝑎11 ⋯ 𝑎1𝑓

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑓

) , aij ∈ {0,1}.    (1) 

The proposed algorithm categorizes flows into several 

groups based on the similarity between flow paths. Because the 

number of switches that each flow passes through is quite small 

in the context of the whole network, it seems that the flow paths 

do not have any correlation if they do not belong to the same 

attack. To compute the similarity, the proposed algorithm uses 

principal component analysis (PCA). PCA converts a set of 

observations of possibly correlated variables into a set of values 

of linearly uncorrelated variables called principal components. 

PCA projects the observations into a new, uncorrelated space of 

smaller dimension. Using PCA, the dimension of flow routing 

matrix 𝑨  is reduced to an m-by-f matrix (denoted by 𝐀′ ), 

meaning that m PCs are used to make the new space. PCs used 

for dimension reduction are represented as p =
{𝑝𝑐1, 𝑝𝑐2, … , 𝑝𝑐m}𝑇 . While each column vector in A 

corresponds to the coordinate of the flow in the original 

n-dimensional space, the column vector in 𝐀′ corresponds to 

the coordinate in the m-dimensional space. Then, the similarity 

between two flows is obtained by the Euclidean distance 

between the coordinates of the flows in the reduced and 

uncorrelated space. Figure 2 shows an example of the 

2-dimensional space of A. Two principal components v1 and v2 

by PCA are depicted in Figure 2.  If m = 1, the coordinates are 

projected into a single point on v1 axis. Then, the coordinate 

points can be clustered into two groups depending on the 

distance between the points in 1-dimensional space. 

C. Flow grouping and load-balancing 

The flows are clustered into 𝑔 groups, and 𝑔 is simply set to 

the number of IDSs, (i.e. 𝑔 = 𝑘). Let G = [G1, ···, Gk]T and B = 

[b1, ···, bk]T denote the set of groups and the set of data rates in 

the groups, respectively. The sum of data rates of flows in i-th 

group is given by bi, which is obtained by 𝑏𝑖 = ∑ 𝑠𝑗𝑗∈𝐺𝑖
. The 

proposed algorithm uses the gravity based clustering [14] in 

order to group flows. Gravity based clustering exploits the 

density of points. First, the area of the region 𝐀′ is measured. 

Because there are 𝑘 IDSs, each group has an initial radius as 

follows: 

 𝑟 = √
Area of region A′

𝑘⋅𝜋
.                    (2) 

After calculating the group radius 𝑟, cluster header nodes are 

selected. For each node, the number of nodes that exist within 𝑟 

is counted. Then, the node with the largest number of neighbor 

nodes is chosen as the first cluster header. In order to choose the 

second cluster header, the counting process is repeated, 

excluding the first cluster header nodes and its neighbor nodes. 

Through this procedure, the properly distributed cluster header 

nodes are obtained, and each node belongs to the cluster with 

the closest cluster header.  

Until now, each flow is assigned to one of 𝑘 groups, and the 

data packets of each group’s flows are forwarded to the same 

IDS. However, since this grouping does not consider the data 
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rate for each group, the traffic loads for each IDS are 

unbalanced. In this case, there is a possibility that the loads will 

exceed the capacity of the IDS. In order to prevent the overflow 

of packets in IDS, the flow grouping should take the total data 

rate of the groups into consideration. The idea of balancing the 

data rates is to adjust the group radius according to the group 

data rate. If a certain group has a larger group data rate, the 

group data rate can be reduced by reducing the group area. 

Accordingly, in order to increase the group data rate, the group 

area size can be enlarged. Therefore, the radius of each group is 

set to be inversely proportional to the group data rate. That is, 

the new group radius of the i-th group can be obtained as 

follows:  

 𝑟𝑖
′ = 𝑟𝑖 ⋅

∑ 𝑏𝑗
𝑘
𝑗=1

𝑘 ∙ 𝑏𝑖
.               (3) 

This balancing algorithm is repeatedly performed until the ratio 

between the maximum and minimum group data rates is 

smaller than a certain threshold 𝛿𝑔. 

IV. EXPERIMENTAL RESULT 

In order to verify the proposed algorithm, an SDN-enabled 

testbed was used for experiments. The testbed runs on a single 

workstation (specifications: Intel Xeon W3565 CPU and 48 GB 

RAM) and is composed of five different key parts: 

virtualization, tapping and mirroring, centralized control, 

traffic and attack generation, and intrusion detection.  

A. Virtualization 

In order to run the experiments, which involve a high number 

of nodes and functions (i.e., switches and hosts), a 

virtualization technique is deployed in the testbed. Linux 

Container (LXC) and Open vSwitch (OVS) are often used to 

virtualize a host machine and its network connectivity. LXC is 

a userspace interface for the Linux kernel containment features 

that creates an environment similar to a standard Linux 

installation without the need for a separate kernel. It can be 

used to deploy functions or services such as servers, clients, 

load balancers, software IDSs, and other network services 

including an SDN controller. OVS is a software-based 

multilayer network switch that virtualizes the network and 

provides multiple protocols and standards that are often used in 

networks. The network topology of the testbed can be created 

by connecting OVS switches via OVS patching and is managed 

centrally by using the SDN Controller. This 

virtualization-based testbed is more similar to a real physical 

network environment than conventional simulators or 

emulators because each container operates software and 

applications independently, and is connected to the OVS using 

its own virtualized network interfaces. 

B. Tapping and Mirroring  

One important operation for intrusion detection is how to 

capture suspicious network traffic from the network. One 

famous method is the ‘tapping’ mechanism, which exploits 

network TAPs (terminal access points) that can passively 

capture traffic on a network. In this experiment, virtual OVS 

ports are created for passive traffic tapping. With a simple TAP 

aggregation application, the packets can also be filtered, and the 

filtered packets can then be redirected to any port. The filtering 

process matches the packets with specific packet identifiers or 

parameters (i.e., IP addresses, protocol types, TCP/UDP ports, 

and VLAN ID) and then redirects those flows to specific ports. 

This mechanism is known as the flow tapping mechanism, and 

the captured traffic can easily be managed from the centralized 

SDN controllers. 

In another mechanism known as ‘port mirroring’, packets are 

replicated based on their incoming or outgoing ports and can be 

sent to other ports. The SDN controllers can replicate traffic 

flows by performing additional ‘OUTPUT’ action to the flows 

to be mirrored. Then, the replicated packets can be sent directly 

to the packet processing tools (i.e., IDS, traffic analyzer, and 

network manager) or sent to another connected switch by 

updating the flow table of the switches. The original traffic and 

replicated traffic can be distinguished by assigning different 

VLAN tags on the network.  

C. Centralized Control 

As mentioned earlier, OVS-based network topology requires 

centralized control for network programmability. The SDN 

controller manages all requests and policies for switch 

interconnection and then translates them into forwarding rules 

(flow entries) in the switches. The controller periodically 

communicates with switches to collect the state of the flows or 

other statistical measurements. In this testbed, two SDN 

controllers are used to distinguish between real data traffic and 

replicated traffic. Each type of traffic is handled by a different 

controller. Open Network Operating System (ONOS) is used to 

deliver data traffic flows from senders to receivers. 

OpenDaylight is used to deliver tapped or replicated packets to 

the IDSs for traffic inspection. 

D. Traffic and Attack Generation  

An important aspect of this experiment is the generation of 

user traffic and attacker traffic with a realistic pattern (i.e. 

traffic paths, traffic rates, and burstiness) in the testbed 

environment. In addition, the generated traffic should be 

identified and controlled. For user traffic, the iperf program is 

used to simulate user traffic by specifying the sender and 

receiver with a specific traffic rate. Attack traffic is generated 

from an attacker node in several identified locations by using 

the Scapy [15] application, which is a python-based packet 

manipulation tool. In this experiment, TCP SYN DoS attacks 

using HTTP port (80) are performed. Each attacker VM runs 

multiple Scapy scripts to generate TCP request packets 

destined for the victim. The location of the traffic 

sender/receiver and attacker are randomly selected (it could 

originate from anywhere in the network and attach to any traffic 

switch), but should be identified in order to analyze the path as 

required in the flow-grouping scheme. 

E. Intrusion Detection 

To inspect network traffic, there are many software-based 

IDSs, such as Snort and Suricata. In the testbed, Snort IDS is 

used for intrusion detection. Snort is an open-source IDS 

software that inspects network traffic by matching it with 



pre-defined rule sets. Snort can be easily installed and run in a 

low-cost virtualized environment (i.e., VMs and containers). In 

order to increase performance, based on the total user traffic, 

multiple IDSs can be deployed and used to handle some parts of 

the traffic analysis. The flow tapping mechanism helps traffic 

distribution between IDSs by connecting all IDSs with the same 

tapping aggregation switch that filters the traffic packets either 

randomly or with the flow-grouping scheme, and the filtered 

packets are sent into specific ports connected to specific IDS 

numbers. Snort IDS performs intrusion detection by counting 

the number of attack packets in a specific time duration before 

generating alarms or alerts. The more attack packets detected 

by the same IDS, the more likely that alarms or alerts will be 

generated. 

Figure 3 shows the network topology of the SDN testbed 

with 19 SDN-enabled switches (15 switches for network 

topology and 4 switches for tapping and mirroring), and 29 

containers (23 containers for traffic generation and 6 containers 

for IDSs). The number of flows generated is 30, and their flow 

rates vary from 1 Mb/s to 10 Mb/s. The number of attacking 

flows is 5 with a rate of 0.5 Mb/s. Note that DDoS attack uses a 

low rate with a number of small-sized packets. The IDS detects 

this attack when more than 800 packets are analyzed during 1 

second. 

Figure 4(a) shows the accumulated number of alarms 

reported by the Snort IDS for the proposed algorithm and a 

random IDS selection algorithm. The first alarm of the 

proposed algorithm is earlier than that of the random method, 

and the number of alarms for the proposed algorithm is greater 

than that for the random algorithm. This result indicates that the 

proposed algorithm can achieve better intrusion detection 

performance relative to the random method. Figure 4(b) shows 

the min/max ratio of IDS loads. The ratio of the proposed 

algorithm is closer to 1, which implies that the loads are 

balanced well among the IDSs. 

V. CONCLUSION  

In this article, we considered the detection of malicious 

attacks on SDNs with multiple IDSs. With multiple IDSs, the 

intrusion detection performance highly depends on how the 

suspicious traffic flows are distributed among the multiple 

IDSs. The proposed algorithm distributes the flows to multiple 

IDSs according their routing paths. If two flows are close to 

each other in terms of the routing path, they are forwarded to 

the same IDS. The proposed algorithm uses a gravity clustering 

algorithm to group the flows, and the cluster size is inversely 

proportional to the sum of the data rates in each group for 

load-balancing purposes. The experimental results indicated 

that the proposed algorithm outperforms a strategy that 

randomly distributes flows to the IDSs. 
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