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Abstract—Software Defined Networking (SDN) introduces a
new communication network management paradigm and has
gained much attention from academia and industry. However,
the centralized nature of SDN is a potential vulnerability to
the system since attackers may launch denial of services (DoS)
attacks against the controller. Existing solutions limit requests
rate to the controller by dropping overflowed requests, but they
also drop legitimate requests to the controller. To address this
problem, we propose FlowRanger, a buffer prioritizing solution
for controllers to handle routing requests based on their likeli-
hood to be attacking requests, which derives the trust values of
the requesting sources. Based on their trust values, FlowRanger
classifies routing requests into multiple buffer queues with
different priorities. Thus, attacking requests are served with
a lower priority than regular requests. Our simulation results
demonstrates that FlowRanger can significantly enhance the
request serving rate of regular users under DoS attacks against
the controller. To the best of our knowledge, our work is the
first solution to battle against controller DoS attacks on the
controller side.

I. INTRODUCTION

Software Defined Networks (SDN) introduces a new com-

munication network management paradigm and has gained

plethoras attention from academia and industry due to its fast

growing potential in the market. One primary goal of SDN

is to allow a network controller, called the control plane,

to overlook and manage the entire network by configuring

routing mechanisms for underlying switches. The switches,

also called the data plane, are solely responsible for data

forwarding according to their forwarding tables. Routing

computation and network management are handled by the

controller. The entries of forwarding tables on switches are

determined and managed by the controller through a secured

communication protocol between switches and the controller.

More specifically, enterprises adopt OpenFlow [6] as com-

munication protocol for secure and efficient communication

between switches and the controller. As specified in the

OpenFlow protocol [1], switches must forward a packet-in

request to the controller if they receive a new packet (an

indication of new flow) that they do not have any matching

entry in the flow table to forward the packet. The controller

receives the packet-in request and computes a routing path

for the new flow before sending packet-out packets to notify

corresponding switches to update their forwarding tables,

which is an indication of the establishment of a new flow

path. Subsequent packets belonging to the same flow will be

forwarded accordingly by switches.

However, the centralized paradigm of SDN is a potential

vulnerability to the system since attackers may launch denial

of services (DoS) attacks or distributed denial of service

(DDoS) attacks against the controller. For example, an at-

tacker may create a large number of new flows in a short

period of time [7], intending to overwhelm the controller

and cause network failure for legitimate users. The current

OpenFlow mechanism provides a solution where switches

use short buffer size and drop excessive requests before

sending them to the controller, hereby avoid overloading the

controller. However, this solution causes a high dropping rate

of legitimate flow requests under attack since all requests are

handled equally. Its first-come-first-serve mechanism does not

grant legitimate flows any advantage.

To address the above problem, we propose FlowRanger1, a

flow prioritizing algorithm to enhance the quality of service

for data flows from legitimate regular clients. In this solution,

we first use a ranking algorithm to identify regular normal

users based on their past requests to the controller. We

then prioritize the execution of requests by using multiple

priority buffers on the controller’s side. The packets in a

higher priority buffer are processed with higher priority than

packets in lower priority buffers. Our simulation demonstrates

that FlowRanger gives significant advantage to requests from

regular users compared to requests from attack users under

controller DoS attacks. Therefore, it can effectively reduce

the impact from attacks and maintain the normal operation

of an enterprise network. To the best of our knowledge, this

paper is the first proposed controller-side solution to battle

against controller DoS attacks in SDN.

The rest of this paper is organized as follows: In section 2,

we give a literature overview of SDN and (D)DoS attacks to

SDN. Section 3 describes the (D)DoS attacks to controllers in

SDN. Our solution named FlowRanger is presented in Section

4. We demonstrate our simulation results of FlowRanger in

Section 5. Finally Section 6 concludes this paper and provides

future work remarks.

II. RELATED WORK

The emergence of software defined networks provides a

new paradigm of solving traditional network routing problem,

1FlowRanger - Flow arRanger



by introduing separate layers for routing and data forward-

ing [2]. At the mean time, SDN security and dependability

has become an open research field for researchers. Recently

many works have been published addressing the security

issues in SDN. For example, FRESCO [8] is an OpenFlow

security application development framework to facilitate the

development and deployment of security applications in SDN.

VeriFlow [4] is proposed as an extra layer sitting in between

control plane layer and data plane layer, which is to check

for network-wide invariant violations dynamically as each

forwarding rule is inserted, modified or deleted. Kreutz,

et.al. [5] provides us an insight of possible threat vectors

of SDN and their respective solutions. Among them, the first

threat they address is forged or faked traffic flows to SDN,

where attackers create packets with spoofed address to the

SDN network, which possibly causes denial of service attacks

to switches or controllers.

The most crucial part of the SDN is the controller, and it

is also a single point of failure in the entire SDN ecosystem.

This vulnerability can be exploited by attackers. A series

of intentionally crafted data packets arriving from multiple

attackers which does not have matching flow entries in flow

tables can accumulate at the same time and exhaust the

resources of the switch. These intentionally crafted data

packets [7], [3] can arrive to the controller as packet-in

queries for the missed flow entries and will also exhaust the

control plane resources, resulting in a denial of service attack

to the controller, also called data-to-control plan saturation

attack [10]. Several solutions have been proposed to address

the data-to-control plane saturation attack, such as Avant-

Guard [9] and OF-Guard [10].

Avant-Guard [9] is an extension to the open flow data

plane called connection migration (CM). The CM responds to

handshake packets if no matching flow entries found. Only

when connection is established, then the packet is sent to

controller to ask for routing path. The purpose of CM is to

fight against DoS attack based on IP spoofing, by effectively

reducing the amount of data to control plane under DoS

attacks. However, Avant-Guard is not effective on controller

DoS attacks using real IPs or through proxy, since TCP

connections can be established. In addition, Avant-Guard is

limited to TCP-based DoS attacks. Another weakness of

Avant-Guard is its implementation on switches. All switches

need to be Avant-Guard equipped, otherwise the entire net-

work is still vulnerable.

Another proposed solution is OF-Guard [10], which use a

intermediate server called data plane cache, to filter probable

attacking packets before sending them to controller. However,

this approach is limited to known attackers, such as attackers

in blacklists. For DDoS attacks by nodes not in the black

list, OF-Guard is not effective. The same as Avant-Guard,

OF-Guard requires all switches to be equipped with the OF-

Guard extension. Otherwise the system is vulnerable.

In our work, we propose FlowRanger, a controller-side

solution to battle against DDoS attacks to controllers. Our

solution does not require any modification on the data plane

side. Therefore, it is easier to deploy compared to the previous

solutions.

Fig. 1. An illustration of controller DDoS attack

III. PROBLEM DESCRIPTION

In a SDN network, when a switch receives a packet but

have no corresponding entries in the flow table indicating

where to forward the packet, it sends the packet to a controller

through a packet in request for routing path computation. The

controller receives requests from the switches, computes the

“appropriate” routing path, and sends packet out packets to

update the flow tables of involved switches. By default, the

requests are queued in the controller’s buffer upon arrival

and are served by first-come-first-serve manner. If the buffer

is full, new requests will be dropped and will never be served.

Due to the contralized nature of SDN, controllers can be

the attacking target of DoS/DDoS. Attackers can be malicious

hosts in the network or malicious switches. For example,

malicious hosts/switches can initialize a large number of new

flows simultaneously inside the network. Since by definition

all new flows should be sent to the controller to find routing

paths, a large number of simultaneous packet-in requests can

overload the controller and cause a large number of packets

dropping out of the controller’s buffer. Therefore new flows

requests from benign users may not be served since their

routing requests are dropped by the controller together with

other attacking requests since they are not handled differently.

In a SDN network, there commonly exisit some regular users

who use the network services on a regular basis. For example,

they can be corporations using clound services for their daily

bisiness operation. Those regular users should have priority

and be protected from being influenced by DoS attacks. The

goal of our work is to find a solution to minimize the impact

of controller DoS attack to legit regular users.

In SDN 1.4 standard, the controller can configure a flow

meter parameter on switches to limit the request sending rate

from each switch. However, it does not solve the problem

since it only allows most legible packets to be dropped at

a earlier phase. It is also not clear how to set an optimal

sending rate limit for each switch in order to have optimized

performance. Other solutions, such as Avant-Guard [9] and

OF-Guard [10], propose to add an additional packet filter-

ing function on the switch-side. However, those switch-side

solutions impose the following constraints: 1) All switches

have to implement the solution otherwise the left-out becomes

the vulnerability of the entire system. Sometimes having

all switches implement the switch-side solution may not be

practical. 2) It can be infeasible or impossible to coordinate
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the filtering thresholds on all switches to optimize the overall

system performance due to computation or communication

overhead constraint. 3) If a switch itself is compromised

and be malicious, then the switch-side solution is rendered

useless.

In this paper we propose a novel solution where we handle

the controller DoS attack problem through job prioritization

on the controller side. Our goal is to protect legit regular

users from heavily influenced from controller DoS attack. In

our solution, the packet-in requests to the controller are not

served through a first-come-first-serve manner (which is by

default), but through a job prioritization process based on the

attacking likelihood of the source. For example, as illustrated

in Figure 1, both attackers’ routing requests and legit users’

routing requests are sent to the controller. When requests

are not prioritized, most legit requests will be dropped since

the controller job buffer is full. If the requests from legit

users have higher priority, then their service quality can be

significantly improved. Through the job prioritization process,

the service quality of normal and legit hosts will not be overly

influenced even the controller is flooded by a large number of

malicious requests, hence improving the overall performance

of the SDN network.

It is also worth noting that our solution is not a replacement

of Avant-Guard or OF-Guard since our solution is imple-

mented on the controller side. Instead our solution can work

seamlessly with those two solutions to further improve the

robustness of SDN against controller DoS attacks. To the

best of our knowledge, FlowRanger is the first controller-side

solution to battle against controller DoS attacks.

IV. THE DESIGN OF FLOWRANGER

TABLE I
LIST OF NOTATIONS

Notation Meaning

~tv, tvmax, tvmin Trust value list, max, and min value
si A SDN network user with index i
α Forgetting factor, α ∈ (0, 1)
θi Abnormal threshold for user i
Tmin Threshold trust for malicious users
Pi Total request from user si
Nq Number of priority buffer queues
Lmax Total buffer length of Nq buffer queues

Lj Length of the jth buffer queue
β Weight scale factor for buffer queues

To minimize the impact from controller DoS attacks (or

DDoS attacks) to legit regular users in SDN networks, we pro-

pose FlowRanger, a controller-side job prioritization mech-

anism by providing differential services to routing requests

from different sources based on their likelihood of being

attackers. FlowRanger consists of three components: trust

management, queuing management, and requests scheduling.

When a new packet-in request arrives at the controller, the

trust management component computes the trust value of the

request sender. After that the queuing managent component

maps the request to a corresponding priority queue based on

the trust value of the sender. Finally, the request scheduling

component determins the processing order of all requests

in different priority queues. Figure 2 shows the work flow

of FlowRanger. The details of the three components are

described in the rest of this section. Table I list all notations

used in this paper.

Algorithm 1 Trust management

1:

2: In each time slot t

3: for Each request r arriving at controller do

4: if The sender s is not in trust list ~tv then

5: Add an entry for sender s in ~tv

6: tv(s) = 1
7: else

8: i←indexof(s, ~tv)

9: if The total request from sender i in this time slot

Pi > θi then

10: Reject request r

11: Break

12: else

13: if Controller not under attack then

14: tvi = α · tvi + 1
15: else

16: tvi = α · tvi − 1
17: end if

18: end if

19: if tvi < Tmin then

20: Blacklist sender i and notice switches

21: end if

22: end if

23: end for

24:

25: In the end of each time slot t

26: for Each sender j in trust list do

27: if sender j does not appear in time slot t then

28: tvj = α · tvj
29: end if

30: Update θj based on the total requests in time slot t

31: end for

A. Trust Management

To provide service differenciation to requests, it is impor-

tant to know the how likely a request is from an attacker.

The trust management component aims at tracking the trust

values (likelihood of being benign) of request users in SDN

network. The users we refer here is the device which uses the

SDN resource. Therefore we can use IP addresses to identify

users in SDN. In FlowRanger, the controller maintains a list

of frequent users and their corresponding trust values. The

trust values are updated in realtime to reflect the frequency of



usage from the users in normal condition. More specifically,

if a user uses the SDN resource during normal condition

(no sign of attacks), then its trust increases. Otherwise if it

appears during the time SDN is under attack, then its trust

value decreases. To keep the list fresh, the system peridically

removes the least trusted users from the list to make room

for new users. The length of the trust value list depends on

the number of regular users of the system and the resource

on the controller that can be used to maintain the list. As

specified in Algorithm 1, during each time slot, if a request

is from a new user and there is room in the tracking list, a

new trust tracking entry is created for the new user with a

default initial trust value. Otherwise if it is an existing user in

the list, then the trust value is updated accordingly. If the trust

value of a user is lower that a threshold Tmin, the controller

considers the user to be an attacker and can blacklist the

user and notify switches to drop any further packets from

the user. Note that a request will be dropped immediately if

the number of requests received in the time slot exceeds the

abnormal threshold of the user. The abnormal threshold for

each user is computeted based on the statistics of the user.

Algorithm 2 Queuing Management

1:

2: for Each request r arriving at buffers do

3: Buffer index of r: i =
⌈

tvi−tvmin

tvmax−tvmin
∗Nq

⌉

4: if
∑Nq

j=1 Lj < Lmax then

5: Append r to queue ith queue

6: Li = Li + 1
7: else if i==1 then

8: Reject request r

9: else

10: for j = 1 to i− 1 do

11: if Lj > 0 then

12: Reject a request from the tail of jth queue

13: Lj = Lj − 1
14: Append r to queue ith queue

15: Li = Li + 1
16: Break

17: end if

18: end for

19: end if

20: end for

B. Queuing Management

After trust comutation, each request is labled with the trust

value of the sender. The priority of a request is deterimed by

its trust label. To be specific, if a request is from a highly

trusted user then it will be served in a higher priority. To

serve the goal of serving requests with different priorities,

FlowRanger proposes SDN controller to maintain multiple

(Nq) buffer queues with different priority levels, and their

accumulative length is up to Lmax. Requests are appended

to corresponding buffer queues based on their trust labels. As

shown in Algorithm 2, the buffer queue number is computed

based on the trust value of the sender. If the buffer queues are

full, FlowRanger drops the tail reuest from the lowest priority

non-empty queue before inserting the new request, therefore

keeping the total length of buffers under the bound.

Algorithm 3 Request scheduling

1:

2: Calculate weights in round robin for each buffer queue

3: for j = 1 to Nq do

4: wj =
⌈

Lj

max(L1,1)
β(j−1)

⌉

5: end for

6:

7: while true do

8: for j = 1 to Nq do

9: if wj < Lj then

10: Serve wj requests in jth queue

11: Lj = Lj − wj

12: else

13: Serve Lj requests in jth queue

14: Lj = 0
15: end if

16: end for

17: end while

C. Request Scheduling

After appending a request to a corresponding beffer queue,

the request is waiting to be served. FlowRanger uses a

weighted round robin strategy to process requests in the

list of queues with different priority levels. As shown in

Algorithm 3, the weight of each buffer queue is computed

based on the length and priority level of the queue. In each

round, the number of the requests processed from a queue is

equal to the weight of the queue. Therefore requests in the

queues with higher priority are processed faster than those

in queues with lower priority. This way FlowRanger serves

the goal of providing differential services on requests from

senders with different likelihood of being attackers.

V. EXPERIMENTS

In this section, we use a simulation approach to evaluate

the performance of FlowRanger. We first discuss about the

simulation setup, then our evaluation results on the compar-

ison of the impact of attacks with and witout FlowRanger

under different paramter settings.

A. Experiment setups

Simulator: We develop a discrete event simulator to eval-

uate the performance of FlowRanger. We consider a SDN

network with one controller and three switches. the network

controller is able to process 100 requests per time slot (service

rate is 0.01). There are in total 100 users using the network.

The default maximum buffer length of controller is set to

200. The simulation lasts for 150 time slots. We use α = 0.9
as the forgetting factor in the trust value updating in trust

management. The default number of queues in the priority

buffers is Nq = 3 and the priority factor in request scheduling

increase with a ratio of β = 2. We are interested to observe

the ratio of served normal request to total number of normal

requests. For the purpose of comparison, we also simulate the
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Fig. 4. Sensitivity studies number of priority queues, amounts of attack requests and forgetting factor.

first-come-first-serve (FCFS) scheduling method with only

one buffer queue.

Attack injection: To evaluate the effectiveness of

FlowRanger against DoS attacks, we synthesize three differ-

ent DoS attacking workloads patterns with different dynamic

variations of router requests, namely Growing, Pulse and

Wave as shown in Fig. 3. Each workload pattern lasts for

50 time slot. By default, the requests towards SDN controller

in each time slot follows a Poisson distribution. Specifically,

the normal requests are all Poisson arrivals with average value

of 100 for each time slot for three patterns. We then inject

attack requests with dynamic arrival rates as shown in Fig. 3

where the peak loads are set to 150 and lowest loads are 50.

B. Experiment results

Overall results: Fig. 4 shows the overall results of both

our proposed FlowRanger and basic FCFS method for three

workload patterns. We can see that FlowRanger is able to

serve much more normal requests than FCFS (as in Fig. 4(a))

under three different attack patterns. Since FCFS have no

mechanism to detect attack requests and normal requests,

the number of served attack requests and normal requests by

FCFS are determined by their workload. Similar results are

shown on the ratio of rejected attack requests and normal re-

quests in Fig. 4(b). The percentage of rejected attack requests

by FlowRanger is much higher than FCFS. These results

demonstrate that FlowRanger is capable of detecting and

rejecting most of the DDoS attacks towards SDN controller

effectively.

The impacts of the volumn of attack requests: Fig. 5

illustrate the results in each time slot for the ratio of served

normal requests to the total normal requests. We can see

that, in general FlowRanger serves much (43%) more normal

requests than FCFS. The service rate of normal requests is not

heavily impacted when the total requests arrival rate exceeds

the service rate. As a contract the service rate of normal

requests drops by large when using FCFS. We also notice that

that the ratio of served normal requests by SDN controller

drops significantly when there are burstive attack requests

(e.g., peak loads in pulse and wave workload patterns). The

reason is that FlowRanger does not react immediately to the

burstive situation. As the time goes, the controller will lower

the attacker’s trust value and reject them.

The impacts of the number of buffer queues: In this

experiment we study the impact of the number of priority

buffer queues in FlowRanger. We can see from Fig. 6(a) that,

the effectiveness of defending DDoS attacks improves with

more number of buffer queues. However, the improvement

is not significant after two queues. This is because with

queues, FlowRanger can well separate the attack flows and

normal flows. Thus, two queues can be sufficient to provide

an efficient detection when the difference between normal

requests and attack requests is apparent.
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Fig. 6. Sensitivity studies number of priority queues, amounts of attack requests and forgetting factor.

The impacts of the maximum buffer length: In this

experiment we study the impact of maximum buffer length

on controller to the performance of FlowRanger. Fig. 6(b)

shows the results by using different maximum buffer length

in FlowRanger. We can see that the ratio of served normal

requests increase with the buffer length and then become

stable after the buffer length reaches 100. This is because

the request processing time of SDN controller is set to 100

in the experiment. If the maximum buffer length is less than

the service rate of controller, many request are rejected.

The impacts of the service time of controller: In this

experiment we study the impact of service time of controller

on DoS defending. From Fig. 6(c), we can see that the ratio

of served requests decreases as the service time gets longer.

The reason is that longer service time means the controller is

slower in processing requests, which leads to high rejection

rates for both attacking and normal requests.

VI. CONCLUSION

In this paper we propose FlowRanger, a controller side

buffer priority solution that protect SDN from data-to-

controler plane flooding attack. FlowRanger uses a trust-based

mechanism to evaluate the likelihood of packet-in requests

are from attacking sources and prioritize them into multiple

buffer queues with different priorities. Requests from trusted

sources are arranged in high priority queues and are served

faster than requests in low priority queues. Our simulation

results shows that FlowRanger can effectively reduce improve

the request serving rate from trusted normal users and the

impact from DDoS attack is significantly reduced compared

to a simple FCFS mechanism. More specifically, our results

show that FlowRanger is able to serve 43% more regular

requests than first-come-first-serve policy.

As of our future work, we plan to further improve the

performance of FlowRanger by improving request scheduling

algorithm to optimize the performance of FlowRanger. We

also plan to implement FlowRanger on a real controller in

our deployment phase.
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