
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341989036

ns3-ai: Fostering Artificial Intelligence Algorithms for Networking Research

Conference Paper · June 2020

DOI: 10.1145/3389400.3389404

CITATIONS

0
READS

327

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Network Simulation View project

Intelligent Healthcare View project

Hao Yin

University of Washington Seattle

3 PUBLICATIONS   0 CITATIONS   

SEE PROFILE

Yayu Gao

Huazhong University of Science and Technology

36 PUBLICATIONS   150 CITATIONS   

SEE PROFILE

Xiaojun Hei

Huazhong University of Science and Technology

117 PUBLICATIONS   2,197 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Yayu Gao on 31 August 2020.

The user has requested enhancement of the downloaded file.

www.NetSimulate.net سایت نت سیمولیت - مرجع شبیه سازي شبکه هاي کامپیوتري و مخابراتی

https://www.researchgate.net/publication/341989036_ns3-ai_Fostering_Artificial_Intelligence_Algorithms_for_Networking_Research?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/341989036_ns3-ai_Fostering_Artificial_Intelligence_Algorithms_for_Networking_Research?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Network-Simulation-4?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Intelligent-Healthcare?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao_Yin49?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao_Yin49?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Washington_Seattle?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao_Yin49?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yayu_Gao?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yayu_Gao?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Huazhong_University_of_Science_and_Technology?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yayu_Gao?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaojun_Hei?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaojun_Hei?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Huazhong_University_of_Science_and_Technology?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaojun_Hei?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yayu_Gao?enrichId=rgreq-e15a258f30b1c76f8b99cfafa9eea02e-XXX&enrichSource=Y292ZXJQYWdlOzM0MTk4OTAzNjtBUzo5MzA0MzcwNzM0Njk0NDBAMTU5ODg0NDg5MzAwMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


NS3-AI: Enable Applying Artificial Intelligence to Network
Simulation in ns-3

Hao Yin, Pengyu Liu, Lytianyang Zhang, Liu Cao, Yayu Gao, and Xiaojun Hei

Department of Electrical Engineering, University of Washington, Seattle WA, 98915

Email: {haoyin, lyutiz, liucao}@uw.edu

School of Electronic Information and Communications, Huazhong University of Science and

Technology, Wuhan, China, 430074

Email: {eic_lpy, yayugao, heixj}@hust.edu.cn

ABSTRACT
Recently, artificial intelligence (AI) algorithms have been widely

used in many fields thanks to the advances in processing speed

and data acquisition and storage, and several applications to com-

puter networking have been described. Performance evaluation

of network systems using AI techniques can be conducted using

ns-3, and such studies can be facilitated if ns-3 is able to interact

with existing open-source AI frameworks. In the past year, an ns-3

extension module called ns3-gym connecting ns-3 with the OpenAI

Gym toolkit has been published; this module makes use of Zero

MQ sockets as an interprocess communications (IPC) mechanism.

In this paper, we present ns3-ai, a newly designed module between

ns-3 and multiple Python-based AI frameworks, to provide effi-

cient and high-speed data exchange between AI algorithms and

ns-3. This module uses a shared memory implementation for IPC,

which we demonstrate on a small benchmark example to achieve

improvements in IPC transfer speed of up to 50-100 times that of

ns3-gym on the same scenario. We also describe our high-level

interface designed to improve the abstraction between ns-3 and

different AI frameworks and provide an example use case based on

a 5GNR scenario. We hypothesize that this new framework may

offer performance advantages over the approach in ns3-gym for

cases in which large amounts of data must be transferred between

ns-3 and the AI framework.

CCS CONCEPTS
• Networks→ Network simulations.

KEYWORDS
AI, ns-3, network simulation

ACM Reference Format:
Hao Yin, Pengyu Liu, Lytianyang Zhang, Liu Cao, Yayu Gao, and Xiao-

jun Hei, Department of Electrical Engineering, University of Washing-

ton, Seattle WA, 98915, Email: {haoyin, lyutiz, liucao}@uw.edu, School of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WNS3, June, 2020, MD, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9999-9.

https://doi.org/10.1145

Electronic Information and Communications, Huazhong University of Sci-

ence and Technology, Wuhan, China, 430074, and Email: {eic_lpy, yayugao,

heixj}@hust.edu.cn. 2020. NS3-AI: Enable Applying Artificial Intelligence

to Network Simulation in ns-3 . In WNS3 ’20. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145

1 INTRODUCTION
With the quick development of modern technology, communication

networks have developed into a complicated and colossal system.

The new network technology, like 5G commits to provide higher

performance and improvement, but the density and complexity

of the network will further increase, and more new requirements

and problems will also emerge. At the same time, with the growth

of computing performance, the field of artificial intelligence has

also made rapid expansion. Algorithms like machine learning, deep

learning, and reinforced learning have been tried and applied in

various fields, and they have also beenwidely used in the research of

communication networks. The combination of the next-generation

network and AI algorithms merges in many areas, such as big data-

driven optimization problem in 5G [1], the integration of AI and

blockchain into 5G [2] and so on. Although AI algorithms have been

widely used in network research, there are still many problems and

challenges in the actual training and testing process.

The first challenge of applying AI algorithms to the network is

the requirements of a large amount of data. Although real networks

can produce massive data, these data are often expensive to monitor

and collect. What’s more, even if the data can be obtained through

methods such as spectrum observatory [3], it is difficult to test in

a real network with well-trained models. Because the hardware

devices used in real networks are not compatible with AI models,

the current application of AI algorithms is usually based on simple

link-level simulations, testing only a portion or a small module in

the network. So the second challenge is how to test and validate

the AI models in networks. Besides, the current research on AI

algorithms is based on the researchers’ own simulation tools, and

it is troublesome for others to reproduce and verify the results.

On some issues of widespread concern, such as the coexistence

of WiFi and LTE in unlicensed bands, the research of network

algorithms needs to consider the openness and transparency of

the system. Therefore, simulation and testing on the open-source

system-level network simulation platform are of great significance

for the development of AI algorithms in the network.

From the discussion above, the open-source, system-level net-

work simulation tool like ns-3 can be applied to the development

www.NetSimulate.net سایت نت سیمولیت - مرجع شبیه سازي شبکه هاي کامپیوتري و مخابراتی

https://doi.org/10.1145
https://doi.org/10.1145


WNS3, June, 2020, MD, USA Yin et al.

and test of the utilization of AI algorithms. It is closer to the real

network environment and can build various types of simulation

scenarios. The users are able to access all the data to interact with

AI models in real-time. As it is an open-source tool, researchers

can quickly reproduce and verify the algorithm, which contributes

to the expansion of AI in the network study. However, most AI

algorithms are likely to rely on open source frameworks such as

TensorFlow and PyTorch, which provides a flexible and more natu-

ral way to create AI models as well as to validate the algorithms.

The ns-3 simulator is an open-source networking simulation tool

implemented by C++ and wildly used for network research and

education. These two parts are developed independently and ex-

tremely hard to integrate, so we propose to connect these two tasks

with data interaction. In a word, we build a flexible research tool to

study the AI algorithms in the network. The specific contributions

of this work include:

• Design and implement a shared memory module between

open-source AI frameworks and ns-3 with data interaction,

which enables run and test the AI algorithms in networking

simulator in the same environment called ns3-ai.
• Provide a high-level interface in both Python and C++ sides

for different algorithms, which makes it easier to adapt to

different requirements.

• Present examples to implement and test AI algorithms in

network simulation.

This paper is organized as follows. In Section 2, we introduced

the background and motivation of this work. Then, we explain the

architecture and implementation of the ns3-ai module in Section 3.

In Section 4, we provide the examples and benchmarking results of

the ns3-ai module. Finally, we conclude the paper in Section 5.

2 BACKGROUND AND MOTIVATION
2.1 AI frameworks and algorithms in

communication networks
Artificial intelligence algorithms are one of the most critical new

wireless radio technology paradigms for the next-generation net-

works. Next-generation wireless networks are expected to support

extremely high data rates and radically new applications, which

require assisting the radio in intelligent adaptive learning and deci-

sion making [4]. In recent papers [5][6], the authors summarized

the most striking recent accomplishments that machine learning

techniques have achieved with respect to classical approaches and

proposed research guideline on networking with machine learning

to help motivate researchers to develop innovative algorithms.

An AI framework is a tool that assists users in performing train-

ing methods and developing algorithms. Its appearance has lowered

the barriers to entry for AI. Users don’t necessitate to start coding

from a complex neural network but use existing models as needed.

It is precisely because of the development of various libraries and

frameworks that it has become a friendly and convenient field,

making people begin their artificial intelligence journey. Compared

to the more efficient but complex C/C ++, Python has become the

popular programming language used by mainstream frameworks

for its simplicity, programmer-friendliness, and high development

efficiency. TensorFlow [7] and PyTorch [8] are two popular AI

frameworks in recent years. TensorFlow is a deep learning frame-

work that supports various platforms such as Linux, Windows, Mac,

and even mobile devices. TensorFlow provides the most compre-

hensive API among all deep learning frameworks, including basic

vector-matrix calculations, various optimization algorithms, con-

volutional neural networks, and loops, etc. It is fast, flexible, and

suitable for large-scale applications at the product level, making it

easy for every developer and researcher to use artificial intelligence

to solve diverse challenges. PyTorch is the python front end of

the Torch [9] calculation engine, which not only provides Torch’s

high performance but also provides better support for the GPU.

The difference between PyTorch and Torch is that it is not just a

package, but a framework that is deeply integrated, which makes

PyTorch more flexible in network construction.

2.2 The ns-3 simulator
The ns-3 simulator is a discrete event network simulator for net-

work systems, primarily for research and educational purposes [10].

It is an open-source project developed with C ++, an object-oriented

programming model. The ns-3 simulator uses several core concepts

and abstractions, which can be well mapped to the way computers

and networks are constructed, that is, nodes are the most basic

entities connected to the network. There is a container class for ap-

plications, protocols, and network devices. An application is a user

program that generates a stream of packets. Protocols represent the

logic of network and transport-level protocols, such as TCP and

OLSR routing. A network device is an entity connected to a channel

abstracted as a primary communication sub-net. For a network

system, some necessary preparations must be made, including in-

stalling network devices in nodes and connecting them to channels,

assigning appropriate MAC addresses, and configuring the proto-

col stacks of all nodes. The ns-3 simulator simplifies the tedious

work behind easy-to-use APIs. Based on the core concepts, the ns-3

community has developed a large number of network protocols

(such as IP, TCP, UDP) and communication technologies (such as

Ethernet, WiFi, LTE, WiMAX), and has modeled the physical layer

operations in detail. Besides, ns-3 provides a variety of statistical

models for wireless channels, mobility, and traffic generation. ns-3

can also interact with external systems (such as a real-time LTE

test platform), applications (such as using direct code execution

technology), and libraries. All these features are essential for the

research of the network and the application of AI algorithms.

Piotr Gawłowicz and Anatolij Zubow from Technische Univer-

sität Berlin have developed a module, ns3-gym, to provide an inter-

face in Reinforced Learning between ns-3 and OpenAI Gym [11].

In ns3-gym, OpenAI Gym mainly provides a standard that allows

access to the state and performs actions in the environment. The

environment is wholly defined in the simulation scenario so that

the Python code is independent of the environment, and the imple-

mentation of the proxy can be easily exchanged while maintaining

the repeatability of the environmental conditions. The ns3-gym

uses ZMQ sockets for the data transmission between ns-3 and Ope-

nAI Gym. However, facing the next generation of network, the

density of the network is rapidly increasing, which a large amount

of data may require to transmit from ns-3 to AI modules for train-

ing or testing. It is crucial to reduce the time consuming as well

www.NetSimulate.net سایت نت سیمولیت - مرجع شبیه سازي شبکه هاي کامپیوتري و مخابراتی



NS3-AI: Enable Applying Artificial Intelligence to Network Simulation in ns-3 WNS3, June, 2020, MD, USA

as supporting colossal data transmission, which is hard to be done

by sockets. Besides, ns3-gym is based on the construction of the

OpenAI Gym. It uses the API provided by the OpenAI gym, but the

drawback is that it is only for reinforcement learning algorithms,

so the ns3-gym may be limited when using other methods like deep

learning. It is complicated for users familiar with other frameworks

to have specific integration.

2.3 Motivation
The main goal of our work is to provide a fast interface between

ns-3 and other Python-based AI frameworks to develop and test

the AI algorithms on open-source, system-level network simula-

tion tool instead of simple link-level simulation or costly testbed.

Moreover, inspired by the ns3-gym module, we implement a new

toolkit to shorten the transmission time and support the exchange

of large amounts of data. Therefore, we design a new method using

shared memory instead of the socket to reduce the transmission

time. Besides, different high-layer interfaces for deep learning and

reinforced learning are developed to integrate with AI algorithms

more conveniently.

There have been other frameworks developed over the years

for Inter-process communication (IPC) between Python and C++

programs like Boost Interprocess and Boost Python. However, these

mature modules may provide more features and functions, but the

cost of learning and redesign of the high-level interface is also

higher. Besides, linking other components or libraries in ns-3 is

troublesome sometimes, especially for the new users. In most use

cases in implementing AI algorithms in network simulator, users

only demand to consider pure data exchange instead of complex

control information. So we design a new shared memory structure

focusing more on handling the data transmission, and also easy to

modify for different data types.

3 IMPLEMENTATION
The ns3-ai module consists of two components, the ns-3 interface

developed by C++ and the AI interface developed by Python. This

module provides a high-level interface for the quick development

of DL/RL algorithms as well as the core module to transfer data

from one C++ program to another Python program. As highlighted

in Section 2, the key concept of interaction between AI frameworks

and ns-3 is to enable data to transfer in multiple processes. Each

process has a different user address space, and the global variables

of any process cannot be seen in the other process, so to exchange

data between processes must pass through the buffer in the ker-

nel (e.g., process A puts data from user space to the kernel buffer,

process B reads the data from the kernel buffer). Several ways

can be adopted to the communication between processes such as

pipe, socket (used by ns3-gym), and shared memory. In the next

generation of wireless communication networks, the density and

complexity of networks are risen rapidly, leading to an increase in

data and training time. Thus, the ability to exchange a large volume

of data in a short time should be considered first, which motivates

us to choose shared memory as the core module to transfer data. In

the following subsections, we describe the system architecture and

explain the shared memory pool and high-level interface in detail.

3.1 System Architecture
The system architecture of running AI algorithms in ns-3 is shown

in Fig. 1. The ns-3 simulator and AI frameworks are running in

different processes. The data transfer is mainly required in two

situations - sending data for training and testing the AI model in

ns-3. The ns-3 simulator is used to set up the network and topology,

which generates data for the training in AI algorithms. The AI

frameworks provide functions to train the models using the data

from the ns-3 and then to return the data from the trained model

back to ns-3 for testing.

The ns-3 simulator provides environments for testing AI algo-

rithms crossing the whole network layers by building simulation

scenarios. No matter you only want to predict a specific value like

channel condition indicator (CQI) in LTE, or you want to estab-

lish a scheduling algorithm for self-driving cars, you could create

a scenario in ns-3 and replace the value or decision through the

interface. For the examination of a well-trained model or algorithm,

it seems that it inserts a function in ns-3. Because the codes of

ns-3 are all open-sourced and well documented, the examination

could be performed in any inner layers or modules. Besides, the

ns-3 simulator could also serve as the data generator. For instance,

thinking of a simple cellar network, users may be connected or

disconnected to the base station or move from one side to another.

We concern about the location and speed of the user in a higher

view but also desire to acknowledge its channel condition and user

experiences. Then we could train a model to make the scheduling

decision based on this information. In ns-3, it is straightforward to

build a scenario from the user view and also receive the lower layer

information to feed the deep learning model. Thus ns-3 could be

regarded as a data generation tool as well as a test tool for various

requirements.

Different AI frameworks using Python scripts are all supported

to be integrated with this module. By applying the interfaces in

the Python side, the users could extract the data from the shard

memory than continue to train the model or return the results

for testing. It only impacts the procedure of data processing and

testing methods without interfering with the internal processing of

the AI algorithms. Therefore it is convenient to rerun the existing

algorithms in ns-3.

The ns3-ai module interconnects the ns-3 and AI frameworks by

transferring data through the shared memory pool. The memory

can be accessed by both sides and controlled mainly in ns-3. From

data using for training or testing to the control signals, all the

information transmitting through the two parts could be handled by

the ns-3 module. In this way, users could define different memories

for complex usages, as all kinds of messages could convey through

the ns3-ai module.

3.2 Shared Memory Pool
The creation and maintenance of shared memory are done in ns-

3 because it’s convenient and simple to operate memory in C++

directly. The data is transferred through separate memory blocks

in the memory pool created at the beginning of each simulation,

so different kinds of data could use different memory blocks. The

structure of the shared memory pool is shown in Fig. 2. The shared

memory pool consists of three structures in continuous memory,

www.NetSimulate.net سایت نت سیمولیت - مرجع شبیه سازي شبکه هاي کامپیوتري و مخابراتی



WNS3, June, 2020, MD, USA Yin et al.

AI 
Frameworks

……

ns-3
Simulator

Python 

ns-3

Networks

Node2

Node1

NodeNModel

Shared Memory

DL/RL Interface

DL/RL Interface

Figure 1: System Architecture.

the memory blocks, the control blocks, and the main control block.

The main control block is in charge of the whole memory pool and

updates its version after each modification, like requiring a memory

block that happened in the memory pool. The control blocks and

the memory blocks are one-to-one correspondence, i.e., each time

when you acquire a newmemory block from the head, a new control

block corresponding to it will be created automatically in the tail

of the memory pool. The control block includes information such

as the size and the address of the memory block. It is readable but

could not be changed until the free of the block. The memory block

is readable and writable memory with the lock indicator (version

and next version pairs) and the pointer to the actual start address

of the data.

3.2.1 Reading/writing lock and synchronization. The reading/writing
lock is implemented by two eight bits variables version and the

next version. For every process that wants to access or modify the

data, it compares the version variable and the next version variable.

If they are the same, it means that the memory is reachable. Then

it adds one to the next version atomically to lock the memory and

also add one to the version after its operation to the memory to

unlock the memory.

The version pairs also achieve the synchronization between reads

and writes. For the most common use case, the ns-3 generates the

data and then writes it to the shared memory, and the AI part reads

the data from the shared memory to train the module. The action

done on the ns-3 side is always writing, and the other side is always

reading, that the action takes place alternately. So the version in

ns-3 is always even, and the other side is always odd. In this way,

the actions are related to the version values, that some methods

like modulation can be applied to synchronize between reads and

writes. If reading and writing happen on both sides, we recommend

using two different memory blocks so that the same method is also

useful in these cases. The version of the memory acts as the signal

to tell different processes the current state of the memory block,

which provides different methods to synchronize by determining

the version value in the memory block.

3.2.2 Cooperation between processes. The polling mechanism is

expected to access the memory and pending for data transmission.

In most cases, we devise an AI algorithm to resolve some issues in

the networks, and the ideal test of the AI algorithm is to plug in

or replace a particular algorithm. In other words, in the network

simulation with AI algorithms, the simulation and accomplishing

AI algorithms are performed sequentially rather than in parallel.

By applying the pooling mechanism to wait for new results before

continuing, it avoids the synchronization of time in each process.

By this means, the results can be reproduced, and it seems like we

solely plug in a new AI algorithm in the simulation procedures. The

processes wait for each other until the data required arrives for the

subsequent step, so users don’t have to concern about the virtual

time management in ns-3 or the control of the different processes.

Because we introduce the version variable to make it easy to

identify the status of the memory by the processes, it is not neces-

sary to develop another method to convey the control signal. Every

process is required to maintain the memory on its version, which

likewise increases the stability of the system and avoids conflict.

It may introduce some extra calculations of the memory size and

version management before the simulation, so we plan to also im-

plement the control channel in the future for more complex cases,

but currently, it is sufficient to deal with most scenarios.

3.3 High-level Interface
The dimension and type of the data usually vary from training to

testing, and most time users want to send some self-defined data

structure rather than a single value. It is simple to transmit and get

a single value from one side to another while much harder to put

or get some self-defined data structure in Python directly. Thus we

provide a high-level interface to enable the transmission of different

types of data in both Python and C++ side.

In the C++ side, a template class for data is used, so the devel-

opers are able to put any structure into the memory directly. In

the Python side, we develop a shared memory extension module

using C/C++, which has the same functions as in the C++ side. Con-

structing extensions for Python requires three main steps: creating

application code, using boilerplate to wrap the code, and compiling

and testing. The application code is similar to the memory pool

management code in ns-3, but without the extra modules or names-

pace in ns-3. It contains all the structures and functions needed

to manage and access the shared memory pool. The code for the

interface is called the "boilerplate" code, and it is an essential part

of the interaction between the application code and the Python

interpreter. The template is mainly divided into four steps:

• Contains Python header files.

www.NetSimulate.net سایت نت سیمولیت - مرجع شبیه سازي شبکه هاي کامپیوتري و مخابراتی



NS3-AI: Enable Applying Artificial Intelligence to Network Simulation in ns-3 WNS3, June, 2020, MD, USA

Memory
Block 1

Memory 
Block 2

Memory
Block 3

…

…
……

Control
Block 3

Control
Block 2

Control
Block 1

Main
Control
block

info version lock

info ID size offset
versi
on

next
version

data

offset

head

tail

Address 
pointer

Figure 2: Memory Structure.

• Adds a wrapper function of type PyObject* for each function

of each module.

• Adds an array of specific type such as PyMethodDef for each

module.

• Adds module initialization function void initModule ().

Then the main task of compilation is done by the setup() function
in setup.py script, which puts these functions together with the

Python library to compile and generate the corresponding Python

module. In this way, the installation of the ns3-ai Python interface

is straightforward, that users require to download the modules and

run the setup.py script, and it will automatically install the modules

for users. Finally, users can import this module and use it in any

AI-based framework. Though we do not support using pip to install

this module as ns3-gym, it is not hard and flexible for the future

update.

For some widely applied algorithms in the network like Rein-

forced Learning (RL) and Deep Learning (DL), more specific data

structures and interfaces are also provided to make this module

easy to use. For RL modules, similar to ns3-gym, functions that

modify the environment set or get actions and create simulation

information are supported to simplify the tasks to develop an RL

algorithm and exchange data. For DL modules, new functions to

extract features for training, feedback prediction results, build up

different targets, and create simulation information are presented

to train and run some prediction models by deep learning more

efficiently. These functions illustrate the everyday tasks to modify

the memory or transfer the date and hide them behind easy to use

interfaces.

4 EXAMPLES AND BENCHMARKING
In this section, we provide an example to explain how to use this

module and build up specific scenarios to examine deep learning

algorithms in ns-3. The example expects tomodify some source code

in ns-3 to train and predict data via a deep learning method. This

work is based on ns3 and 5G NR module developed by CTTC[12].

Besides, we implemented the same example for both ns3-ai and

ns3-gym modules to test the stability and transmission speed, as

well as illustrate the usage of RL interfaces.

4.1 CQI Prediction in NR with LSTM
4.1.1 Motivation. In cellar systems, channel conditions can seri-

ously affect communication quality. Therefore, one of the critical

technological advances is to improve channel estimation and en-

hance modulation schemes continuously. The channel quality indi-

cator (CQI) is one of the most important parameters to determine

the data rate achievable for multimedia transmission. However, due

to the transmission delay from the user to the base station, real-

time CQI is not always available in the base station. Unlike LTE,

the channels of 5G networks may be more dynamic and complex,

which makes it more challenging to estimate CQI accurately. In

5G new radio (NR) systems, more complex and variable channels

may severely limit the throughput performance of 5G systems. Cur-

rently, 5G networks are still under active development, aiming to

provide large data rates of 100 Mbps to 1 Gbps at any time, any-

where, even in high-speed mobile environments with speeds up to

500 km/h. In this example, we propose a CQI prediction method in a

deep learning method through a Long Short-Term Memory (LSTM)

algorithm. To directly verify the CQI prediction algorithms in 5G

www.NetSimulate.net سایت نت سیمولیت - مرجع شبیه سازي شبکه هاي کامپیوتري و مخابراتی



WNS3, June, 2020, MD, USA Yin et al.

new radio (NR) systems, an online training module is proposed to

reduce the negative impact of outdated CQI on the degradation of

communication quality, especially in high-speed mobility scenarios.

4.1.2 Using LSTM to Predict CQI. Long Short-TermMemory (LSTM)

is well suited to deal with issues that are highly time series related

and can evaluate and predict changes in CQI at the BS side in the

past CQI series. Therefore, we use LSTM as the core network to

predict the subsequent CQI. The key function of LSTM is to have

a certain memory effect, which can remember the historical char-

acteristics of CQI, and then use this information to predict future

CQI. As shown by 3, this module consists of a fully connected layer,

an LSTM layer, a prediction layer, and an update module. Connect

fully connected layers for feature extraction and then implement an

LSTM layer to extract temporal information. Finally, the prediction

layer sums the output of the vectors by the LSTM layer to generate

the predicted value of the CQI. The input layer is a CQI vector from

CQIr eal (t − τ − N ) toCQIr eal (t − τ ), where N represents the data

length used for each prediction. NFC Neural units are used for fully

connected layers and the output of the module is a vector of length

NLSTM .

Figure 3: LSTM architecture.

4.1.3 Online Training Method. Because the distribution of the CQI

sequence changes over time in the wireless channel, the trained

model is time-sensitive, so an online learning model is introduced

to update the predictions in time. When the MAC layer starts sched-

uling users, it processes the CQI reported by the user. Since the

generation and transmission of CQI are time-consuming (use τ to

represent the delay of all CQI arrivals), traditional scheduling will

use CQIr eal (t − τ ) as the input CQI (CQIdelay (t)) Current time t .
Therefore, we want to use the algorithm predictedCQIpred instead

of CQIr eal (t − τ ).
The ns3-ai is used to realize this online training module. The

ns-3 provides the data as the input of the deep learning algorithm

to train the model through ns3-ai and holds itself until getting the

feedback data from the DL algorithms. In this way, it only transfers

the data from both sides without having any impact on the original

Table 1: Simulation Parameters

Parameter Value
Power 20 dBm

Numerology 1

Bandwidth 100MHz

Scenario UMa

Data Rate 64Mbps

RLC Mode UM

Moving Module Constant Speed

Speed 10m/s 20m/s 30m/s . . .

Scheduler Algorithm Random Robin

Table 2: Training Module Parameters

Parameter Value
Batchsize 20

Pre_train Times 20

LSTM Unit 30

Input Length (K) 200

Data Length Using for Prediction (N) 40

Activation Function Selu

simulation process, which looks like simply adding an algorithm

directly into the simulator.

4.1.4 Results. The ns-3 simulation platform can be used for system-

level simulation and data generation. In the simulation scheme, four

users are attached to the base station as interfering users. Another

user, marked as a mobile user, is crossing the base station from out-

side the coverage area. The speed of mobile users varies in different

scripts, which gives us different results. This scheme is completed

to examine the performance in high-speed situations, and multiple

users are attached to the base station to test downlink scheduling

performance. Select the millimeter-wave channel module and set

the numerology to 1 to reduce simulation time. The delay τ of the

CQI used by the BS is set to 0.5 ms to cause a delay equal to only one

slot, so it is close to the true CQI. The simulation scenario is shown

in 4, and the parameters are shown in table 1. The parameters used

by the training module are shown in table 2.

Figure 4: Graphic illustration of simulation scenario: Four
interfere users and one users move fast across the BS for the
prediction of CQI.

www.NetSimulate.net سایت نت سیمولیت - مرجع شبیه سازي شبکه هاي کامپیوتري و مخابراتی



NS3-AI: Enable Applying Artificial Intelligence to Network Simulation in ns-3 WNS3, June, 2020, MD, USA

Using the data generated from ns-3, we test the prediction accu-

racy of the scenario mentioned above, and the result is shown in Fig.

5. The prediction accuracy indicates that the CQI predicted is equal

to the real CQI that feeds back after the delay. During each sched-

uling procedure at time t , we predict a CQI value CQIpreduct (t)
instead of using theCQIdelay . After several slots, the eNB will re-

ceive the actual value of the CQI CQIr eal (t), then we compare it

with CQIpreduct (t) whether they are the same to calculate the ac-

curacy. As the speed increases, the channel condition changes more

rapidly, so the CQI is hard to predict, which causes a drop in predic-

tion accuracy. Two different prediction methods are applied as the

prediction module, the FNN and LSTM. The LSTM module is more

reliable than the FNN module, which has a prediction accuracy

above 50%. Because LSTM is designed to deal with issues that are

highly time series related like CQI, the prediction result is better

than FNN. Even if the speed is increasing, FNN could not provide a

reliable prediction while LSTM is still working.

Figure 5: Prediction Accuracy versus speed.

4.2 Benchmarking
To compare the transmission time with ns3-gym, we implement

the same environment in Opengym and ns-3. The motivation of

the RL-TCP examples is to apply the RL algorithm to TCP conges-

tion control. For real-time changes in the environment of network

transmission, the network can get better throughputs and smaller

delays by strengthening the learning management sliding window

and threshold size. However, running RL algorithms may have an

impact on the accuracy of the actual time-consuming in the data

exchange module, so a simplified model is applied to calculate the

time cost by the interaction module. The benchmarking example is

shown in Fig. 6. The dumbbell-like topology simulation scenario

is set up in ns-3. There is only one leaf node on each side, and

two routers R0, R1 in the middle link. The TCP buffer is 4 Mbps,

receiving and sending rate is 2Mbps respectively. The left leaf node

sends packets to the right node through the link. The routers ini-

tialize a routing table about the nodes in the simulation to sense

all the other nodes. The result is the number of packets received

by the right node. During the process of TCP simulation in ns-3, it

Right Leafs

(Clients)

Left Leafs

(Sinks)

R0 R1

N N

accessaccess

Bottleneck

Figure 6: TCP example topology.

Figure 7: Average transmission time from ns-3 to Python.

sends the state values of TCP such as ssThresh, congestion window,

segment size, etc. to the RL training module with an extra tag of the

current time. The RL module only reads these data and then using

its current time to minus the time tag to calculate the transmission

time from ns-3. After reading the tag, it will rewrite the tag and

update the memory version. Then the ns-3 side could also read the

tag and do the calculation to determine the transmission time from

the RL module.

The benchmarking results are shown in Fig. 7 and Fig. 8. The

transmission time of ns3-ai is six times faster than ns3-gym from

ns-3 to Python and is even 50 to 100 times faster from Python to

ns-3. The performance of ns3-gym is stable while in ns3-ai, the

time-consuming is related to the direction. The reason is that in

Python, reading data requires extra steps to lock memory, which

is slower than directly uses C++. These parts will be optimized in

the next release. From these two figures, it clear the ns3-ai module

is much faster, which contributes to reducing the simulation time

especially when the data volume is huge.

The total simulation time differs from scenarios. For this RL TCP

example, the data volume is not huge, so the reduction of the data

www.NetSimulate.net سایت نت سیمولیت - مرجع شبیه سازي شبکه هاي کامپیوتري و مخابراتی



WNS3, June, 2020, MD, USA Yin et al.

Figure 8: Average transmission time from Python to ns-3.

exchange time may not be significant compared with the simulation

time. However, in the next-generation wireless network like 5G,

the density of the network increases rapidly. Like the new layout

of numerology in 5G, the time slot could be less than 0.03 ms. If

you want to test AI algorithms for downlink scheduling, more data

changing will happen that takes more time. In this kind of situation,

the reduction of time should be considered to optimize the simula-

tion time of the combination of AI algorithms and next-generation

networks. What’s more, as discussed in section 1, ns-3 can be served

as a data generator for AI. In these kinds of scenarios, data changing

is the main time-consuming part, so that the reduction of times

matters more.

5 CONCLUSION
In this paper, we introduce ns3-ai, a new toolkit for data transmis-

sion between the ns-3 and AI frameworks based on shared mem-

ory. The transmission speed is seven times faster from ns-3 to AI

frameworks and 50-100 times faster the other way than the current

ns3-gym toolkit from the benchmarking results. Moreover, it also

supports more AI frameworks than ns3-gym with high-level DL

and RL interface. A specific CQI prediction example is presented for

the test and usage of the ns3-ai module. We are formulating a series

of test cases, including downlink scheduling problem in LTE/NR,

and optimize the lock method to further reduce the transmission

time from ns-3 to Python side.

6 ACKNOWLEDGMENTS
The authors would like to express my special thanks to Prof. Hen-

derson for helping release the ns3-ai module and the review of

this paper as well as to Prof. Roy for supporting me to continue

this work in UW. Secondly, we would also like to thank other stu-

dents, Keshu Liu, Yingying Han, and Xiaojun Guo from Dian Group

in HUST who also help us to run some simple tests and provide

feedback!

REFERENCES
[1] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, and

W. Xiang. 2016. Big data-driven optimization for mobile net-

works toward 5g. IEEE Network.
[2] Y. Dai, D. Xu, S. Maharjan, Z. Chen, Q. He, and Y. Zhang. 2019.

Blockchain and deep reinforcement learning empowered

intelligent 5g beyond. IEEE Network.
[3] S. Roy, K. Shin, A. Ashok, M. McHenry, G. Vigil, S. Kan-

nam, and D. Aragon. 2017. Cityscape: a metro-area spec-

trum observatory. In 2017 26th International Conference on
Computer Communication and Networks (ICCCN), 1–9. doi:
10.1109/ICCCN.2017.8038427.

[4] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, and L. Hanzo.

2017. Machine learning paradigms for next-generation wire-

less networks. IEEE Wireless Communications.
[5] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang. 2020.

Toward an intelligent edge: wireless communication meets

machine learning. IEEE Communications Magazine.
[6] M.Wang, Y. Cui, X.Wang, S. Xiao, and J. Jiang. 2018. Machine

learning for networking: workflow, advances and opportu-

nities. IEEE Network.
[7] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

AndyDavis, JeffreyDean,MatthieuDevin, SanjayGhemawat,

Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Lev-

enberg, RajatMonga, SherryMoore, Derek G.Murray, Benoit

Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Tensorflow:

a system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 16). (November 2016).

[8] 2017. Introduction to pytorch. Deep Learning with Python: A
Hands-on Introduction.

[9] Ronan Collobert, Samy Bengio, and Johnny Marithoz. 2002.

Torch: a modular machine learning software library, (No-

vember 2002).

[10] Thomas R. Henderson, Mathieu Lacage, and George F. Riley.

2008. Network simulations with the ns-3 simulator. In In
Sigcomm (Demo).

[11] Piotr Gawłowicz and Anatolij Zubow. 2019. ns-3 meets Ope-

nAI Gym: The Playground for Machine Learning in Net-

working Research. In ACM International Conference on Mod-
eling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM). Miami Beach, USA.

[12] Natale Patriciello, Sandra Lagen, Lorenza Giupponi, and Bil-

jana Bojovic. 2019. An improved mac layer for the 5g nr ns-3

module. In Proceedings of the 2019 Workshop on Ns-3 (WNS3

2019). Association for Computing Machinery, Florence, Italy,

41–48.

View publication statsView publication stats

www.NetSimulate.net سایت نت سیمولیت - مرجع شبیه سازي شبکه هاي کامپیوتري و مخابراتی

https://doi.org/10.1109/ICCCN.2017.8038427
https://www.researchgate.net/publication/341989036

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 AI frameworks and algorithms in communication networks
	2.2 The ns-3 simulator
	2.3 Motivation

	3 implementation
	3.1 System Architecture
	3.2 Shared Memory Pool
	3.3 High-level Interface

	4 Examples and Benchmarking
	4.1 CQI Prediction in NR with LSTM
	4.2 Benchmarking

	5 Conclusion
	6 Acknowledgments

